Reductive Alkylation of Electronegatively-Substituted Alkenes by Alkylmercury Halides¹

Glen A. Russell,* Bing Zhi Shi, Wan Jiang, Shuiesheng Hu, Byeong H. Kim, and Woonphil Baik

Contribution from the Department of Chemistry, Iowa State University, Ames, Iowa 50011 Received October 11, 1994[®]

Abstract: Photolysis of alkylmercury halides in the presence of electronegatively-substituted 1-alkenes yields adduct radicals [RCH₂CH(EWG)^{*}] that in some cases react with RHgX to form RCH₂CH(HgX)(EWG), e.g., EWG = (EtO)₂PO or PhSO₂. When the EWG is carbonyl or cyano, the resonance stabilized adduct radicals fail to react with the alkyl mercury halide. In these cases photolysis with RHgCl/KI in Me₂SO leads to the adduct mercurial via reaction of the adduct radicals with RHgI₂⁻. The reactions of tertiary-enolyl adduct radicals are inefficient with RHgX/KI, and disproportionation of the adduct radicals is the major reaction pathway. For secondary- or tertiary-adduct radicals the reductive alkylation products are formed in excellent yield by reaction with RHgCl and silyl hydrides in Me₂SO solution in a process postulated to involve RHgH as an intermediate. The relative reactivities of a number of α , β -unsaturated systems toward *t*-Bu^{*} have been measured by competitive techniques. The results demonstrate a high reactivity of *s*-*cis* enones relative to the *s*-*trans* conformers.

Introduction

Terminal alkenes with electronegative substituents are readily attacked by nucleophilic alkyl radicals, e.g., t-Bu^{*}. Reactivity is controlled mainly by the SOMO-LUMO interactions as visualized in the polar transition state structure 1. To convert the adduct radical (formed regioselectively via 1) to the alkylation product in a chain reaction we have examined a

$$R^+ [CH_2 = CH - EWG]^{\bullet}$$

1

number of routes starting from alkylmercury halides. In some cases [EWG = PhSO₂, (EtO)₂P(O)] the electron-accepting adduct radical will react with RHgX to continue a chain reaction, Scheme 1.² The addition product **2** can be converted to RCH₂-CH₂(EWG) by reduction with BH₄⁻ or by protonolysis.

Scheme 1

$$\operatorname{RHgX} \xrightarrow{h\nu} \operatorname{R}^{\bullet} + \operatorname{HgX}^{\bullet} \xrightarrow{\operatorname{RHgX}} \operatorname{R}^{\bullet} + \operatorname{HgX}_{2} + \operatorname{Hg}^{0} \quad (1)$$

$$\mathbf{R}^{\bullet} + \mathbf{CH}_{2} = \mathbf{CH}(\mathbf{EWG}) \rightarrow \mathbf{RCH}_{2}\mathbf{CH}(\mathbf{EWG})^{\bullet}$$
(2)

$$RCH_{2}CH(EWG)^{\bullet} + RHgX \rightarrow RCH_{2}CH(HgX)(EWG) + R^{\bullet}$$
2
(3)

Electron-accepting heteroatom-centered radicals or 'HgX are known to displace R' from RHgX in reactions whose rates increase dramatically from R = Bu to *i*-Pr to *t*-Bu or PhCH₂.^{2,3} However, when EWG is cyano or carbonyl, reaction 3 with X = Cl or I is ineffective and cannot compete with the addition of the adduct radical to the substrate or disproportionation of the adduct radical. To overcome this reactivity problem we have developed iodide promoted reactions where the intermediate mercury species reacts readily with secondary α -cyano or α -keto radicals, reaction 4 (Z = alkyl, aryl, or NH₂).⁴⁻⁷ However, reaction 4 occurs inefficiently with tertiary-enolyl

$$RCH_{2}CHCOZ^{\bullet} \xrightarrow{RHgX/I^{-}} RCH_{2}CH(COZ)HgI \xrightarrow{H^{+}} Or BH_{4}^{-}$$
$$RCH_{2}CH_{2}COZ (4)$$

radicals. In these cases conversion of the adduct radicals to the reductive alkylation product can be achieved by hydrogen atom transfer from Bu₃SnH or RHgH formed by the reaction of RHgCl with BH_4^- or Bu₃SnH.⁸ Because of the high reactivity of Bu₃SnH or RHgH, a serious side reaction is the trapping of R[•] to form RH. We have developed an alternative route to RHgH from the reaction of silyl hydrides with RHgX in Me₂SO solution, reaction 5.⁹ Because of the low steady

$$\equiv SiH + RHgX \xrightarrow{Me_2SO} \equiv SiX + RHgH$$
(5)

concentration of the RHgH formed in this manner, hydrogen atom transfer to R[•] is minimized, particularly when the alkene has a low reactivity toward R[•]. Use of the three different procedures (*t*-BuHgCl/*hv*; *t*-BuHgCl/*k*I/*hv*; *t*-BuHgCl/ \equiv SiH) allows an extensive series of relative reactivities toward *t*-Bu[•] to be measured in Me₂SO by competitive techniques.

Results and Discussion

Photostimulated Reactions of RHgX. Extended photolysis of 2-4 equiv of RHgCl or RHgI with CH₂=CHSO₂Ph or

© 1995 American Chemical Society

[®] Abstract published in *Advance ACS Abstracts*, April 1, 1995. (1) Electron Transfer Processes. 57.

⁽²⁾ Russell, G. A.; Jiang, W.; Hu, S. S.; Khanna, R. K. J. Org. Chem. 1986, 51, 5498.

⁽³⁾ Russell, G. A. Acc. Chem. Res. 1989, 22, 1.

⁽⁴⁾ Russell, G. A.; Hu, S.; Herron, S.; Baik, W.; Ngovwatchai, P.; Jiang, W.; Nebgen, M.; Wu, Y.-W. J. Phys. Org. Chem. **1988**, 1, 299.

⁽⁵⁾ Russell, G. A.; Yao, C.-F.; Rajaratnam, R.; Kim, B. H. J. Am. Chem. Soc. 1991, 113, 373.

⁽⁶⁾ Russell, G. A.; Baik, W.; Ngovwatchai, P.; Kim, B. H. Acta Chem. Scand. 1990, 44, 170.

^{(7) (}a) Russell, G. A.; Kim, B. H. Tetrahedron Lett. **1990**, 31, 6273. (b) Russell, G. A.; Kim, B. H. Synlett **1990**, 87.

⁽⁸⁾ Giese, B. Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds; Pergamon: Oxford, 1986.

⁽⁹⁾ Russell, G. A.; Shi, B. Z. Synlett. 1993, 701.

100.4

	Table 1.	Photostimulated	reactions	of RHgCl	with	CH ₂ =CH(EW	G)
--	----------	-----------------	-----------	----------	------	------------------------	----

			products (%) ^e	,
EWG	R (equiv)	conditions ^a		$RCH_2CH(I)(EWG)^d$
$(EtO)_2P(O)$	t-Bu (4)	PhH, 24 h	98, 88I	88, 72I
$(EtO)_2P(O)$	t-Bu (4)	Me ₂ SO, NaI (6 equiv), 20 min	75	
$(EtO)_2P(O)$	t-Bu (4)	Me ₂ SO, NaI (6 equiv), 24 h	4a (17%), 5 a (24%) ^e	
$(EtO)_2P(O)$	t-Bu (2)	Me ₂ SO (60%)-MeOH (40%), NaI (2 equiv), 3 h	98 ^f	
$(EtO)_2P(O)$	<i>t</i> -Bu (1)	Me ₂ SO (60%)-MeOH (40%), Me ₄ NI (3 equiv), 2 h	4a (78%), 5a (9%) ^f	
$(EtO)_2P(O)$	t-Bu (4)	CCl ₄ , 24 h	52I ^g	45I ^g
$(EtO)_2P(O)$	<i>i</i> -Pr (4)	PhH, 24 h	52, 44I	48, 40I
$(EtO)_2P(O)$	$c - C_6 H_{11}(4)$	PhH (80%)-Me ₂ SO (20%), 24 h	65	41
$(EtO)_2P(O)$	Bu (5)	PhH (80%)-Me ₂ SO (20%), 24 h	32, 261	
PhSO ₂	t-Bu (2)	PhH, 3 h	t-BuCH ₂ CH(SO ₂ Ph)HgCl (44%) ^h	
PhSO ₂	<i>t</i> -Bu (3)	PhH, 24 h	96, 871	81, 75I
PhSO ₂	<i>t</i> -Bu (2)	Me ₂ SO (60%)-MeOH (40%), NaI (4 equiv), 5 h	95, 89¥	
PhSO ₂	<i>i</i> -Pr (3)	PhH, 24 h	70, 62I	46, 38I
PhSO ₂	$c - C_6 H_{11}(3)$	PhH (80%)-Me ₂ SO (20%), 24 h	69	37
PhSO ₂	Bu (5)	PhH (80%)-Me ₂ SO (20%), 24 h	60, 56I	
Ph ₃ Si	t-Bu (3) ^{<i>i</i>,<i>j</i>}	Me_2SO , 20 h	t-BuCH ₂ CH(SiPh ₃)HgI (58%) ^h	
Ph ₃ Si	t -Bu $(3)^i$	Me ₂ SO (80%)-PhH (20%), 24 h	4c (90%); 5c (8%) ^c	

^{*a*} Photolysis at 350 nm in a Rayonet Photoreactor at 40–45 °C; 0.05–0.1 M substrate. ^{*b*} By GC with internal standard; I, isolated by column chromatography. ^{*c*} After reaction with NaBH₄/H₂O. ^{*d*} After reaction with I₂. ^{*e*} Workup with either NaBH₄/H₂O or aqueous Na₂S₂O₃; ~30% of the dimer of **2a** was formed. ^{*f*} Workup with aqueous Na₂S₂O₃. ^{*s*} CCl₃CH₂CH₂P(O)(OEt)₂ and CCl₃CH₂CH(I)P(O)(OEt)₂. ^{*h*} Isolated after workup with H₂O. ^{*i*} 0.12 M. ^{*j*} *t*-BuHgI with fluorescent sunlamp irradiation for 20 h.

CH₂=CHP(O)(OEt)₂ in Me₂SO for 24 h with irradiation at 350 nm leads to an \sim 1:1 mixture of 4 and 5 from disproportionation of the adduct radical 3, reaction 6, a major chain termination step of Scheme 1. The dimer of 3a is also a significant product upon extended photolysis. However, 2 is apparently first formed via Scheme 1; the mercurials are photolabile in Me₂SO and

$$2RCH_{2}CH(Q)^{\bullet} \rightarrow RCH_{2}CH_{2}(Q) + RCH = CH(Q) \quad (6)$$

$$3 \qquad 4 \qquad 5$$

$$a, Q = (EtO)_{2}P(O)$$

$$b, Q = PhSO_{2}$$

$$c, Q = Ph_{3}Si$$

$$d, Q = PhS$$

eventually form the disproportionation and dimerization products of 3. In PhH or PhH (80%)-Me₂SO (20%) the adduct mercurials undergo little photodecomposition. The mercurials can now be detected by ¹H NMR in C_6D_6 or isolated upon aqueous workup. Treatment of the products formed in PhH with NaBH₄ leads to the formation of 4a or 4b with R = t-Bu in 96-98% yield, while treatment with I₂ forms t-BuCH₂CH-(I)SO₂Ph or t-BuCH₂CH(I)P(O)(OEt)₂ in high yield, Table 1. Under similar conditions with 3 equiv of RHgCl and NaBH₄ workup, CH_2 =CHSiPh₃ forms 4c in 85-90% yield with R = *t*-Bu or *i*-Pr but now 8-10% of **5c** is also formed ([RHgCl]₀ = 0.12 M, irradiation at 350 nm). At lower concentrations of [RHgCl]₀ reaction 3 is not as effective, and reaction 6 becomes more important. Thus, with 0.04 M [t-BuHgCl]_o, NaBH₄ workup gives 4c (65%) and 5c (31%). The mercurial t-BuCH₂-CH(SiPh₃)HgI can be isolated upon sunlamp photolysis with t-BuHgI in Me₂SO- d_6 for 20 h, and little decomposition of this mercurial is observed under these conditions. The isolated mercurial can be reduced by NaBH₄ to 4c (58%) accompanied by only 3% of 5c. Irrespective of solvent or workup procedure, CH_2 =CHSPh gives a mixture of 4d and 5d with considerable amounts of [t-BuCH₂CH(SPh)]₂. In the case of 3d, reaction 3 occurs slowly, if at all, and the products result mainly from bimolecular radical reactions. For reaction 3 to occur readily the adduct radical 3 must be easily reduced suggesting a

Figure 1. Reactions in Me₂SO of diethyl vinylphosphonate and *tert*butylmercury chloride (initial concentrations 0.12 and 0.45 M, respectively); A, dark (25 °C); B, sunlamp irradiation, 35 °C; C, sunlamp irradiation in presence of 0.012 M di-*tert*-butyl nitroxide; initial kinetic chain length ~100; D, sunlamp irradiation with 6 equiv of NaI; initial kinetic chain length ~16 (from di-*tert*-butyl nitroxide inhibition). Product after workup with NaBH₄ was diethyl 3,3-dimethylbutylphosphonate.

transition state for reaction 3 with considerable ionic character, e.g., $\mathbf{6}$.

$$RCH_2CH(EWG)$$
: HgCl⁺ R[•]

Evidence for the chain reaction of Scheme 1 in the reactions of *t*-BuHgX with the vinylphosphonate is presented in Figure 1. The reactions with the vinylphosphonate or sulfone do not occur in the dark, while the photostimulated processes are inhibited by (t-Bu)₂NO[•]. From the inhibition period in Me₂-SO-d₆ an initial kinetic chain length of ~100 is calculated for 0.1 M CH₂=CHP(O)(OEt)₂ in the presence of 4 equiv of *t*-BuHgCl at 35 °C. A similar initial kinetic chain length is observed in C₆D₆ and for CH₂=CHSO₂Ph in Me₂SO or PhH. In the presence of 6 equiv of NaI the consumption of the phosphonate is faster (Figure 1), but the reaction occurs with a shorter kinetic chain length. Photolysis of *t*-BuHgCl/KI forms radicals rapidly, possibly via ate-complexes such as *t*-BuHgI₂⁻ or from (t-Bu)₂Hg.⁴ In many cases the iodide-promoted reactions will occur in the dark from thermal initiation (with kinetic chain lengths >500) and more rapidly in the presence of $(NH_4)_2S_2O_8$.¹⁰

Some evidence in regard to the rate constant for reaction 3 can be presented. Telomers such as t-BuCH₂CH[P(O)(OEt)₂]- $CH_2CH_2P(O)(OEt)_2$ are not observed in reactions with 2 equiv of t-BuHgCl in PhH. Since k_p for vinyl phosphonate polymerization is 1.2×10^2 M⁻¹ s⁻¹at 40 °C,¹¹ it follows that if k_3 is $< 1 \times 10^3 \text{ M}^{-1} \text{ s}^{-1}, \sim 5\%$ of the telomer should be formed from a solution 0.1 M in CH2=CHP(O)(OEt)2. Photolysis of t-BuHgCl (0.2 M) with CH₂=CHP(O)(OEt)₂ (0.05 M) in 10 M CCl₄ forms CCl₃CH₂CH[P(O)(OEt)₂]HgCl as evidenced by the conversion to CCl₃CH₂CH₂P(O)(OEt)₂ (52%) or CCl₃CH₂CH- $(I)P(O)(OEt)_2$ (48%) upon workup with NaBH₄ or I₂. The adduct CCl₃CH₂CH(Cl)P(O)(OEt)₂ is not detected (<5%) although with BrCCl₃ (2 M) in Me₂SO only the adduct CCl₃-CH₂CH(Br)P(O)(OEt)₂ is formed (reflecting the fact that BrCCl₃ is \sim 5000 more reactive than CCl₄ in halogen atom transfer reactions). From the chain transfer constant for the polymer radical of the vinylphosphonate with CCl₄, which has been measured as > $3k_p$ at 130 °C,¹² it follows that if k_3 for CCl₃-CH₂CHP(O)(OEt)₂[•] reacting with *t*-BuHgCl is $\leq 1.5 \times 10^5 \text{ M}^{-1}$ s^{-1} , more than 5% of the CCl₄ adduct should have been formed while to form >90% of the adduct with 2 M BrCCl₃ limits k_3 to $<1.5 \times 10^6$ M⁻¹ s⁻¹. Reaction 3 with *t*-BuHgCl and EWG = P(O)(OEt)₂ thus occurs with a rate constant of $10^5 - 10^6 \text{ M}^{-1}$ s⁻¹.

With CH_2 =CHCOCH₃, CH_2 =CHCOPh, CH_2 =CHCO₂Et or CH_2 =CHCN only low yields of the reductive alkylation products are formed in PhH or Me₂SO upon photolysis with *t*-BuHgCl or *t*-BuHgI. For delocalized adduct enolyl radicals, reaction 3 cannot compete effectively with the addition of the adduct radical to the substrate or with radical-radical interactions such as reaction 6.

Reductive Alkylations with t-BuHgX/M⁺I⁻. Addition of iodide salts to t-BuHgCl in Me₂SO forms t-BuHgI and atecomplexes such as t-BuHgI₂^{-,4} Comproportionation to yield $(t-Bu)_2$ Hg is also a possibility. The yields of the reductive alkylation products are often dramatically improved in the presence of I⁻ because of a faster initiation processes,⁴ and a more rapid conversion of the adduct radical to the mercurial 2. Thus, photolysis of t-BuHgCl (1 equiv) with CH₂=CHP(O)(OEt)₂ in Me₂SO (60%)-MeOH (40%) for 2 h with acidic workup forms 4a (R = t-Bu) in 31% yield. Addition of I increases the yield of 4a to 65% with 2 equiv of NaI and 78% with 3 equiv of Me₄NI. With 1 equiv of t-BuHgI and 2 equiv of NaI the yield of 4a increases to 86%, while 2 equiv each of t-BuHgCl or t-BuHgI and NaI gives 98% of 4a after 3 h. In a similar fashion, the yield of 4b observed in Me₂SO upon photolysis of CH₂=CHSO₂Ph at 350 nm in Me₂SO with 1 equiv of t-BuHgCl for 4 h followed by acidic workup increases from 39 to 85% by the addition of 2 equiv of NaI while in Me₂SO (60%)-MeOH (40%) with 2 equiv each of t-BuHgCl or t-BuHgI and NaI the yield of 4b is 95-98% upon acidic workup after 2-5 h of photolysis.

With α,β -unsaturated carbonyl compounds which form secondary-enolyl radicals the effect of added I⁻ is even more pronounced, Table 2. With added I⁻ there is no evidence for telomerization or disproportionation of the adduct radicals and high yields of the reductive alkylation products are observed in Me₂SO solution upon workup with H₂O or aqueous Na₂S₂O₃

Table 2. Photostimulated Reactions of *t*-BuHgCl with α , β -unsaturated carbonyls in Me₂SO in the presence of iodide ion.^{*a*}

	% yield (equiv	t-BuHgCl, time) ^c
tert-butylation product ^b	t-BuHgCl	t-BuHgCl + 2NaI
t-BuCH ₂ CH ₂ CO ₂ Et	$5 (2, 10 h)^d$	80, 75I (2, 6 h)
t-BuCH ₂ CH ₂ COCH ₃	7 (2, 10 h)	85, 81I (2, 6 h)
t-BuCH ₂ CH ₂ COPh	29 (4, 18 h)	57 (4, 18 h)
t-BuCH ₂ CH ₂ CONH ₂		83 (1.2, 1 h) ^{ef}
t-BuCH ₂ CH ₂ CONHPh	12 (6, 31 h)	92 (6, 22 h)
3-t-Bu-cyclopentanone	••••	89, 72I (2, 4 h)
3-t-Bu-cyclohexanone	35 (2, 10 h)	85, 73I (2, 6 h)
3-t-Bu-cycloheptanone		69I (2, 5 h)
4-t-Bu-tetrahydra-2H-pyran-2-one		81I (2, 3 h)
6-t-Bu-5,6-dihydrouracil		61 (1.5, 10 h) ^{ef}
t-BuCH(Ph)CH ₂ COPh	<10 (4, 22 H)	50 (8, 24 h) ^f
t-BuCH(CO ₂ Et)CH ₂ CO ₂ Et	37 (4, 20 h)	100 (4, 3 h) ^g
t-BuCH(COPh)CH ₂ COPh	10 (4, 24 h)	76 (4, 24 h) ^h
t-BuCH(CO2Et)CH2COPh	6 (4, 24 h)	63 (4, 24 h) ^{i,j}
3-t-Bu-1-Me-2,5-pyrrolidinedione		91 (4, 5 min) ^k
t-BuCH ₂ CH(CO ₂ Ét) ₂		90 (4, 4 h) l^{l}
t-BuCH ₂ CH(CO ₂ Et) ₂		90 (4, 4 h) l^l

^a Photolysis by a 275 W fluorescent sunlamp at 30–35 °C; workup with aqueous Na₂S₂O₃. ^b Substrates were CH₂=CHCO₂Et, CH₂=CH-COCH₃, CH₂=CHCOPh, CH₂=CHCONH₂, CH₂=CHCOPh, CH₂=CHCONH₂, CH₂=CHCONHPh, 2-cy-cloalkenones, 5,6-dihydro-2H-pyran-2-one, uracil, chalcone, ethyl maleate or fumarate, PhCOCH=CHCOPh, PhCOCH=CHCO₂Et, *N*-meth-ylmaleimide, and CH₂=C(CO₂Et)₂. ^c By GC or ¹H NMR with internal standards on a 0.2–0.4 mmol scale; I, isolated yields after column chromatography on a 1–5 mmol scale. ^d Major product was *t*-BuCH₂-CH(CO₂Et)CH₂CH₂CO₂Et. ^e ¹H NMR yield in Me₂SO-d₆ in a dark reaction at 25 °C. ^f 8 equiv of KI, 4 equiv K₂S₂O₈. ^s 4 equiv of KI. ^t 8 equiv of KI, 4 equiv KI, 2 equiv K₂S₂O₈. ⁱ ~8% of PhCOCH(Bu-*t*)CH₂CO₂Et also formed. ^k 8 equiv vol. ⁱ 8 equiv of KI, 4 equiv of PTSA; product not detected in the absence of a proton donor.

(to remove unreacted mercurial). For unreactive substrates which add t-Bu* to form secondary-enolyl radicals, e.g., chalcone or uracil, 40–60% yields of the reductive alkylation products can be achieved in Me₂SO by reaction with a mixture of t-BuHgCl/NaI/(NH₄)₂S₂O₈ which generates a high flux of t-Bu* as evidenced by the strong CIDNP signals for Me₃CH and Me₂C=CH₂ observed in the absence of any t-Bu* traps.¹⁰ α , β -Unsaturated carbonyls that form β -carbonyl-substituted radicals do not undergo reductive alkylation with t-BuHgCl/KI. Thus, coumarin (which forms mainly the benzylic adduct radical) gives a mixture of products resulting from bimolecular radical reactions.¹³

The reactions of CH₂=CHCN or CH₂=CHCO₂Me with *t*-BuHgI/I⁻ are conveniently followed in Me₂SO-*d*₆ by ¹H NMR. Rapid reaction leading to **2** with Q = CO₂Me or CN are observed even in the presence of water or alcohol while in the presence of ND₄⁺, **2** is initially formed and then protonalized to form the monodeuterated reductive alkylation product.¹⁴ Since similar reactions are not observed with (*t*-Bu)₂Hg or (*t*-Bu)₂Hg/I⁻, the promotion by I⁻ must be connected with the formation of *t*-BuHgI₂⁻ and its rapid reaction with the adduct radicals, reaction 7.¹⁴ Electron transfer from the ate-complex to the adduct radical to form the carbanion is excluded with Q = CN or CO₂Me.

t-BuCH₂CH(Q)[•] + t-BuHgI₂⁻ \rightarrow t-BuCH₂CH(Q)HgI₂⁻ + t-Bu[•] (7)

⁽¹⁰⁾ Russell, G. A.; Guo, D.; Baik, W.; Herron, S. J. *Heterocycles* **1989**, 28, 143.

⁽¹¹⁾ Levin, Y. A.; Breus, A. A.; Ivanov, B. E. Dokl. Akad. Navk, SSSR 1977, 236, 387.

⁽¹²⁾ Raynal, S. Phosphorus Sulfur 1981, 11, 287.

⁽¹³⁾ Russell, G. A.; Kim, B. H.; Kulkarni, S. V. J. Org. Chem. 1984, 54, 3768.

⁽¹⁴⁾ The reactions of *t*-BuHgI/KI with CH₂=CHCN or CH₂=CHCO₂-Me in Me₂SO are quite fast and with 1.1 equiv of *t*-BuHgI/2-4 equiv of KI are complete in 5-30 min in the dark at room temperature. These reactions are free radical chain processes since 10 mol % of $(t-Bu)_2$ NO[•] completely inhibits them for 12-24 h; unpublished results with Mr. Ping Chen and Dr. Chaozhong Li.

Electron transfer from I⁻ or *t*-BuHgI₂⁻ can be observed for more easily reduced adduct radicals. This is possibly the case for *t*-BuCH₂C(CO₂Et)₂[•] where the iodide-promoted reaction leads to polymerization of CH₂=C(CO₂Et)₂ which can be completely suppressed by the presence of a proton donor, Table 2. Protonated Schiff bases are excellent traps for alkyl radicals and in the presence of I⁻ reductive alkylation occurs rapidly by the chain sequence of Scheme 2.⁵ Similar reductive alkylations involving electron transfer from I⁻ or RHgI₂⁻ occur in the reductive alkylations of certain pyridinium-type cations.¹⁵

Scheme 2

$$R^{\bullet} + PhCH = NHPh^{+} \rightarrow PhCH(R)NHPh^{\bullet+}$$

PhCH(R)NHPh^{•+} + RHgI₂⁻ → PhCH(R)NHPh + R[•] + HgI₂

The RHgX/KI system is relatively ineffective for reductive alkylations involving tertiary-enolyl radicals. Thus photolysis of 4 equiv of t-BuHgCl with ethyl methacrylate in the presence of KI slowly forms a mixture of t-BuCH₂CH(Me)CO₂Et and (t-BuCH₂)₂CHCO₂Et in a ratio of ~1:1 with 4 equiv and ~4:1 with 8 equiv of KI in Me₂SO (Table 3). The di-*tert*-butylated product results from t-Bu[•] addition to t-BuCH(=CH₂)CO₂Et formed by the disproportionation of t-BuCH₂C(CH₃)CO₂Et[•], Scheme 3.¹⁶ In the presence of Me₃SiCl/D₂O, or with

Scheme 3

$$2t-\operatorname{BuCH}_{2}CH(\operatorname{Me})CO_{2}Et^{\bullet} \rightarrow 3e$$

$$t-\operatorname{BuCH}_{2}CH(\operatorname{Me})CO_{2}Et + t-\operatorname{BuCH}_{2}C(=CH_{2})CO_{2}Et$$

$$4e \qquad 5e$$

$$5e + t-\operatorname{Bu}^{\bullet} \rightarrow (t-\operatorname{BuCH}_{2})_{2}CCO_{2}Et^{\bullet} \rightarrow \rightarrow (t-\operatorname{BuCH}_{2})_{2}CHCO_{2}Et$$

 D_3O^+ workup, deuterium is not appreciably incorporated into the products.

Reductive alkylation products are sometimes observed in the absence of reaction 7 or of electron transfer. Thus, reaction of *tert*-butyl-*N*-methylmaleimide with *t*-BuHgCl (4 equiv)/KI (8 equiv) forms 71% of the saturated di-*tert*-butylated derivative (8) as a 2.5:1 ratio of *cis* to *trans* isomers, reaction 8.⁷ Compound 8 apparently results from hydrogen atom transfer from *t*-Bu⁺, *t*-BuHgX, (*t*-Bu)₂Hg or *t*-BuHgI₂⁻ to the adduct radical. Consistent with this conclusion, workup with D₂O incorporates no more than 10% of deuterium into 8. Apparently this route to the reductive alkylation product becomes important only when other reactions of the adduct radical are blocked for steric reasons.

Reductive Alkylations by \equiv **SiH/RHgCl in Me₂SO.** Table 3 illustrates the efficiency of Et₃SiH for promoting the reductive alkylation of ethyl methacrylate by *t*-BuHgCl in Me₂SO in the dark at room temperature. The reactions with added hydrides form Hg⁰ in quantitative yield and can be easily monitored by the cloudiness of the solution when Hg⁰ is being precipitated.

Table 3. tert-Butylation of Ethyl Methacrylate by t-BuHgX.^a

X	added		% y	ield ^c
(equiv)	reagent (equiv)	conditions (time) ^b	4e	7
Cl (4)	KI (4)	$Me_2SO, h\nu$ (12 h)	18	13
Cl (4)	KI (8)	Me_2SO , $h\nu$ (12 h)	28	6
Cl (4)	KI (8)	Me_2SO/Et_3N , $^{d}h\nu$ (12 h)	35	12
I (4)	.,	$Me_2SO, h\nu (12 h)$	10	10
I (4)	KI (8)	Me_2SO , $h\nu$ (12 h)	22	16
I (2)	$NH_4^+HCO_2^-(2)$	$Me_2SO, h\nu$ (1 h)	22	1
I (2)	$Bu_3SnH(2)$	$Me_2SO(10 min)$	67	0
Cl (2)	NaBH ₄ (2)/OH ⁻	CH_2Cl_2 (20 min)	60	0
Cl (2)	$Et_3SiH(2)$	$Me_2SO, h\nu$ (11 h)	90	0
Cl (2)	$Et_3SiH(2)$	$Me_2SO(11 h)$	93	0
C1 (4)	$PhSiH_3(4)$	$Me_2SO(1 h)$	54	0

^{*a*} 0.05 M CH₂=C(Me)CO₂Et. ^{*b*} $h\nu$, irradiation by a 275 W fluorescent sunlamp which gave a reaction temperature of 35–40 °C. ^{*c*} By GC or ¹H NMR integration with PhCH₃ as an added internal standard. ^{*d*} 25 vol %.

The reaction apparently proceeds in a manner similar to the Giese procedure employing RHgX/OH⁻/BH₄⁻ in CH₂Cl₂.⁸ An unstable RHgH is formed that readily generates R* and also undergoes facile hydrogen atom transfer to R[•] or to an adduct radical formed by the addition of R[•] to an alkene. The concentration of RHgH will play an important role in determining whether R[•] is trapped by RHgH (to form RH) or can add to some radicophile to form the adduct radical. Silyl hydrides apparently react slowly in Me₂SO with RHgX to yield a low steady state concentration of RHgH, reaction 5.17 Silvl hydride promoted alkylations do not occur, or are much less effective, with Et₃SiH in solvents such as CH₂Cl₂, THF, PhH, or DMF. The reaction of \equiv SiCl with Me₂SO to form \equiv SiOSi \equiv undoubtedly plays an important role in the formation of RHgH via reaction 5. The disappearance of Et₃SiH in reaction 5 can be followed by ¹H NMR in Me₂SO- d_6 in the absence of an alkene. This reaction is not affected by sunlamp irradiation or by the presence of $(t-Bu)_2NO^{\bullet}$. However, product formation in the alkylation of ethyl methacrylate by t-BuHgCl/Et₃SiH in the dark at 25 °C does show inhibition by $(t-Bu)_2NO^{\bullet}$ with an initial kinetic chain length of 8 (0.13 M ethyl methacrylate with 2 equiv each of t-BuHgCl and Et₃SiH). Thermal initiation via RHgH must be quite rapid which is also indicated by the lack of an appreciable effect of irradiation (Table 3). Further evidence for a free radical reaction is the observation that reaction of 5-hexenylmercury bromide with Et₃SiH and CH2=CHCO2Et forms mainly ethyl 4-cyclopentylbutyrate (52%).

Faster formation of RHgH from RHgCl in Me_2SO is observed with PhSiH₃ in place of Et₃SiH or by the addition of KI which

⁽¹⁵⁾ Russell, G. A.; Rajaratnam, R.; Wang, L.; Shi, B. Z.; Kim, B. H.; Yao, C. F. J. Am. Chem. Soc. **1993**, 115, 10596.

⁽¹⁶⁾ An 80% yield of 7 can be achieved in the reaction of CH₂=CH(CH₂-Cl)CO₂Et with *t*-BuHgCl/KI/*hv*. Here the intermediate adduct radical undergoes β -elimination of Cl^{*} to continue a chain reaction (Cl^{*} + *t*-BuHgX \rightarrow ClHgX + *t*-Bu^{*}).

⁽¹⁷⁾ A similar reaction with Bu₃SnH occurs: Quirk, R. P. J. Org. Chem. 1972, 37, 3554.

forms the more reactive RHgI.¹⁸ The use of PhSiH₃ can be advantageous because upon aqueous workup an insoluble resin is formed that is easily separated from the reductive alkylation product. With Et₃SiH workup leads to a mixture of Et₃SiOH and Et₃SiOSiEt₃ which are best separated from the alkylation product by chromatography.

Triethylsilane has such a low reactivity in hydrogen atom transfer reactions that its reaction with the adduct radical can be discounted.⁸ However, with Bu₃SnH reductive alkylation can involve both hydrogen atom transfer from Bu₃SnH and RHgH.¹⁹ Thus, Et₃SiH (4 equiv) was found to have no effect on the ~1:1 ratio of **4e** and **7** formed upon photolysis of 4 equiv of (*t*-Bu)₂Hg with ethyl methacrylate in Me₂SO. On the other hand, under the same conditions 4 equiv of PhSiH₃ had an effect on the ratio; **4e** and **7** were formed in a ratio of 9:1 suggesting that hydrogen atom transfer from PhSiH₃ occurred. However, **7** was always a detectable product from photolysis with (*t*-Bu)₂Hg in the presence of silyl hydrides whereas with *t*-BuHgX and Et₃SiH or PhSiH₃ there was no indication of any disproportionation of **3e** to yield eventually **7** (see Table 3).

Although the reactions promoted by PhSiH₃ are routinely faster (~ 1 vs ~ 12 h for completion), the yields of the reductive alkylation products are in general higher with Et₃SiH. For relatively unreactive radicophiles (e.g., CH2=C(Me)CO2Et in Table 3), Et₃SiH gives a higher yield of the reductive alkylation product presumably because a lower steady state concentration of RHgH is maintained which favors trapping of R[•] by the alkene. However, with more reactive radicophiles, e.g., CH_2 =CHCOPh or CH_2 =C(Cl)CO₂Et), the yields are about equivalent for reactions of t-BuHgCl promoted by Et₃SiH or PhSiH₃. With BuHgX the differences between PhSiH₃ and Et₃-SiH are accentuated still further. Table 4 gives the yields of the reductive alkylation products observed with a number of electronegatively substituted 1-alkenes. Excellent yields of tertbutylation products are observed from alkenes that yield tertiaryenolyl adduct radicals such as dimethyl itaconate (CH2=C(CO2-Me)CH₂CO₂Me) or citraconate (MeO₂CC(Me)=CHCO₂Me), substrates which fail to form the reductive alkylation products with t-BuHgI/KI/hv.

Side Reactions in Reductive Alkylation with RHgX/=SiH. 1,1-Disubstituted alkenes with substituents that can complex RHgX give rise to a side reaction involving the hydrogenation of the alkene, reaction 9. Electrophilic catalysis by Hg(II)

$$CH_{2} = C[N(CH_{2}CH_{2})_{2}O]CO_{2}Et + =SiH \frac{RHgCl}{Me_{2}SO}$$
$$CH_{3}CH[N(CH_{2}CH_{2})_{2}O]CO_{2}Et (9)$$
$$9$$

species for silvl hydride reduction processes has been documented.²⁰ With ethyl α -morpholinoacrylate reduction to **9** also occurs with PhHgCl or HgCl₂ (Table 5). When reduction is a competing side reaction it is more important for BuHgCl or PhSiH₃ than for *t*-BuHgCl or Et₃SiH. The chain alkylation reaction generally occurs more slowly for BuHgCl than for *t*-BuHgCl. This allows an ionic hydrogenation reaction catalyzed by the mercurial to compete more effectively. Although CH₂=C(CO₂Et)₂ gave only the reduction product with *t*-BuHg-Cl/Et₃SiH or PhSiH₃, CH₂=C(CO₂Bu-*t*) gave an excellent yield of *t*-BuCH₂CH(CO₂Bu-*t*)₂ with *t*-BuHgCl/PhSiH₃ (Table 4).⁹

Table 4. Reactions of $CH_2 = C(R^1)(R^2)$ with 4 equiv of RHgCl and Silyl Hydrides in Me₂SO To Form $RCH_2CH(R^1)(R^2)^{\alpha}$

R^1, R^2	R	≡ SiH ^b	time (h)	yield, % ^c
H, CO ₂ Et	t-Bu	Et	12	84
H, CO ₂ Et	t-Bu	Ph	1	88
H, CO ₂ Et	n-Bu	Et	14	93
H, CO ₂ Et	<i>n</i> -Bu	Ph	14	12
Me. CO ₂ Et	t-Bu	Et	11	93
Me. CO ₂ Et	t-Bu	Ph	1	54
Me. CO ₂ Et	n-Bu	Et	20	74
Me CO ₂ Et	n-Bu	Ph	2	10
CH ₂ CO ₂ Me, CO ₂ Me	t-Bu	Et	12	88
Ph CO ₂ Et	t-Bu	Ph		78
Ph CO ₂ Et	n - Bu	Et	12	41
C1 CO ₂ Et	$t_{-}Bu$	Ph	10	95
$C1$ $C0_2Et$		Ph	7	03
PhS CO-Et		Ft	17	57 (34)
COaFt COaFt	$t - \mathbf{D}\mathbf{u}$ $t - \mathbf{B}\mathbf{u}$	Et	12	8 (34)
CO_2Et, CO_2Et	t Bu	Dh	12	33 (57)
CO_2Et, CO_2Et		1 II E+	12	- (60)
CO_2Et , CO_2Et	n-Du n Bu	Dh	12	-(62)
CO_2EI, CO_2EI	//-Du	LII DP	12	-(02)
O_2Bu-i, O_2Bu-i	<i>t-D</i> u + D.	ГII Б+	12	- (82)
$N(CH_2CH_2)_2O, CO_2EI$	1-Du	El Dh	12	-(82)
$N(CH_2CH_2)_2O, CO_2EI$	<i>i-</i> Би	PII Et	1	-(87)
NEL2, CO2EL	I-DU	EL	3	- (60)
NHCOCH ₃ , CO_2Me	I-Bu	Pn Et	12	22
H, CN	I-BU	Et	12	90
H, CN	<i>t-B</i> u	Pn Fi	1	95
H, CN	n-Bu	Et	20	/3
Me, CN	t-Bu	Et	22	86
Me, CN	n-Bu	Et	22	86
CI, CN	t-Bu	Et	12	76
CI, CN	t-Bu	Ph	1	85
Cl, CN	n-Bu	Ph	1	86
H, COPh	t-Bu	Ph	2	91
H, COPh	n-Bu	Et	3	90
Me, COPh	<i>t</i> -Bu	Et	12	54
Me, COPh	<i>t-</i> Bu	Ph	1	47
Me, COPh	n-Bu	Et	22	40
Ph, COPh	t-Bu	Et	12	64 (17)
Ph, COPh	t-Bu	Ph	1	62 (6)
Cl, COPh	t-Bu	Et	22	43
Cl, COPh	t-Bu	Ph	1	69
Cl, COPh	n-Bu	Ph	3	35 (41)
H, COC₀H₄OMe- <i>p</i>	t-Bu	Et	12	95
H, COMe	t-Bu	Et	5	69
H, COCMe ₃	t-Bu	Et	8	78
Me, CHO	t-Bu	Et	1	30
H, $PO(OEt)_2$	t-Bu	Et	2	87
H, SPh	t-Bu	Et	24	52
H, SOPh	t-Bu	Et	12	60
H, SO ₂ Ph	t-Bu	Et	4	91
C1, C1	t-Bu	Et	12	75
H, SiPh ₃	t-Bu	Et	9	74
-				

^{*a*} 0.025 M alkene under N₂. Reactions were terminated when the cloudiness from Hg⁰ precipitation cleared. For BuHgCl/Et₃SiH reactions 4 equiv of KI were added to increase the reaction rate. ^{*b*} Et = Et₃SiH, Ph = PhSiH₃. ^{*c*} By GC and ¹H NMR with internal standards. Values in parentheses are the yields of the reduction products, CH₃CH(R¹)(R²).

Table 5. Silyl Hydride Reduction of Ethyl α -Morpholinoacrylate by =SiH and Hg(II) Compounds in Me₂SO^{*a*}

mercurial	silane	time	% 9 ^b
t-BuHgCl	Et ₃ SiH	12 h	82
t-BuHgCl	PhSiH ₃	35 min	87
PhHgČl	PhSiH ₃	40 min	84
$HgCl_2$	Et ₃ SiH	1 h	27
$HgCl_2$	$PhSiH_3$	1 h	60

^{*a*} Reaction of 0.025 M ethyl α -morpholinoacrylate with 4 equiv each of the mercurial and silane. ^{*b*} By GC and ¹H NMR.

Apparently complexation of Hg(II) by the di-*tert*-butyl ester is not as important and only the homolytic reductive alkylation is observed.

⁽¹⁸⁾ The half-life of 0.1 M Et₃SiH in the presence of 1 equiv of *t*-BuHgI in Me₂SO- d_6 is ~15 min (by ¹H NMR), while with *t*-BuHgCl the half-life is much longer, ~3 h.

⁽¹⁹⁾ BH_4^{-} is quite unreactive towards alkyl radicals. Reductive alkylation by RHgCl/OH⁻/NaBH₄ in CH₂Cl₂ must occur via RHgH: Russell, G. A.; Guo, D. *Tetrahedron Lett.* **1984**, 25, 5239.

⁽²⁰⁾ Kursanov, D. N.; Parnes, Z. N.; Loim, N. M. Synthesis 1974, 633.

1,2-Disubstituted alkenes generally give low yields of reductive alkylation products in the t-BuHgCl/Et₃SiH system unless both substituents are electron withdrawing, e.g., maleates, fumarates, citraconates. Without two electron-withdrawing substituents the rate of radical trapping by the alkene is usually too low to compete effectively with hydrogen atom transfer from RHgH. For unreactive substrates where a secondary-enolyl adduct radical is formed, reaction in the t-BuHgCl/KI system is preferred for reductive alkylation. Thus, chalcone and uracil yield 10 and 11 with t-BuHgCl/KI/K₂S₂O₈ (Table 2) but with

Et₃SiH/t-BuHgCl the reactions fail completely. 2-Cyclohexenone or 5,6-dihydro-2H-pyran-2-one give excellent yields of the alkylation products with t-BuHgCl/KI/h ν (Table 2) but only low yields with t-BuHgCl/Et₃SiH (~30%). However, coumarin, which yields a variety of products from the benzylic adduct radical with t-BuHgCl/KI/hv,13 does react with Et₃SiH/t-BuHgCl to form 12 in 55% yield accompanied by $\sim 4\%$ of the 4-tertbutyl isomer.

Reactivities of Alkenes towards t-Bu'. Competitive tertbutylation in Me₂SO of various pairs of alkenes including 13-18 are reported in Tables 6 and 7. The primary standards used were (E)-PhCH=CHI (which yields (E)-PhCH=CHCMe₃)^{21,22} and CH2=CHCO2Et and CH2=CHP(O)(OEt)2 (which yield the reductive alkylation products 4 with t-BuHgCl/KI/hv or t-Bu-HgCl/Et₃SiH). The absolute rate constant for t-Bu[•] additions to CH2=CHP(O)(OEt)2 has been measured at 233 K.23 Using $\log A = 7.5 \pm 0.5$ (a value observed for many 1-alkenes),²⁴ the rate constants for t-Bu* addition to (E)-PhCH=CHI and CH₂=CHCO₂Et at 25 °C are estimated to be $1.6 \pm 1 \times 10^4$ and $1.3 \pm 0.8 \times 10^6$ L/mol-s, respectively based on the measured relative reactivities of CH2=CHCO2Et:CH2=CHP-(O)(OEt)₂:(E)-PhCH=CHI of 82:19:1.0. The absolute rate constants for t-Bu[•] addition to a variety of alkenes is isopropyl alcohol at 27 °C as measured by ESR techniques have been reported by Fischer.²⁴ There is fair agreement (within a factor of \sim 3) between these rate constants and those calculated in Me₂SO from Table 7. Thus, from Table 7, $CH_2 = CCl_2$ adds *t*-Bu[•] with a rate constant of $2.6 \pm 1.6 \times 10^5$ L/mol-s, whereas Fischer reports $3.5 \pm 0.2 \times 10^5$. The reactivity of 4-vinylpyridine from Table 7 is $1.6 \pm 1 \times 10^5$, whereas Fischer reports $4.6 \pm 1 \times 10^5$. With acrylonitrile Table 7 yields $3.4 \pm 2.1 \times 10^5$. 10⁶, while Fischer reports $1 \pm 0.4 \times 10^6$ in isopropyl alcohol and $2.4 \pm 0.2 \times 10^6$ in isobutene. Solvent polarity may effect the rate constant for t-Bu[•] addition by solvation of resonance

(24) Fischer, H. In Substituent Effects in Radical Chemistry; Viehe, H. G., Janovsek, Z., Merenyi, R., Eds.; Reidel: Dordrecht, 1988; p 123.

structure 1 in this early transition state reaction. Thus, in Me₂-SO the relative reactivities of CH₂=CHCO₂Et:CH₂=CHCN: (E)-EtO₂CCH=CHCO₂Et towards t-Bu[•] are 1:3:6, while Giese et. al.²⁵ report in CH₂Cl₂ a reactivity series of 1(CH₂=CHCO₂-Me):5:3. [Toward c-C₆H₁₁ in CH₂Cl₂ the reactivities are 1:3: 5,²⁵ while towards polystyrenyl radical in mixed alkene solvents at 60 °C the relative reactivities are 1:2:3.²⁶]

In Table 6 the reactivities of α -substituted vinyl ketones and esters are compared. The α -methyl substituted compounds are less reactive than the unsubstituted compounds as expected on the basis of 1. Similarly, the α -chloro derivatives are much

Table 6. Relative reactivities towards t-Bu[•] a

R	$CH_2 = C(R)COPh$	$CH_2 = C(R)CO_2Et$
Me	70 ± 10	50 ± 10
Н	470 ± 20	80 ± 10
MeCONH		115 ± 10
PhS		210 ± 10
Ph	175 ± 10	310 ± 10
C1	700 ± 100	1300 ± 200

^a Relative to (E)-PHCH=CHI.

more reactive. With esters, α -substitution of phenyl for hydrogen results in a large increase in reactivity, presumably because of an increase in the stability of the benzylic adduct radical. However, for $CH_2=C(R)COPh$, the reactivity is considerably higher for R = H than for either R = Me or Ph. We believe this to be a result of changes in the preferred s-cis or s-trans geometries as the bulk of R is changed. It is known that CH₂=CHCOPh exists primarily in the s-cis conformation (84%), whereas the α -substituted derivatives prefer the *s*-trans conformations.²⁷ The reactivity towards t-Bu[•] also increases from CH2=CHCOMe (react. 90; 29% s-cis²⁸) to CH2=CH-COCMe₃ (react. 190, 100% s-cis²⁸). The α -methylene carbonyls 15-18 with s-cis geometries have much higher reactivities than CH2=C(Me)COPh (reactivity 70) or CH2=C(Me)CO2Et (reactivity 50); reactivities of 15-18 = 180, 150, 370, 780,respectively. The high reactivities of *s*-*cis* carbonyl compounds relative to their s-trans analogues is presumably connected with a favorable SOMO-LUMO interaction (1) in the orthogonal approach of t-Bu[•] to the conjugated π -systems. The phenyl group of PhCOCH=CH₂ plays a small role in activating the enone group toward t-Bu[•] attack. Thus, for the s-cis enones, PhCOCH=CH₂ is ca. twice as reactive as t-BuCOCH=CH₂, while 18 is ca. five-times as reactive as 15. Ketones and

⁽²¹⁾ Russell, G. A.; Ngoviwatchai, P. Tetrahedron Lett. 1985, 26, 4975. (22) Russell, G. A.; Ngoviwatchai, P. J. Org. Chem. 1989, 54, 1836.
 (23) Baban, J. A.; Roberts, B. P. J. Chem. Soc., Perkin Trans. II 1981.

¹⁶¹

⁽²⁵⁾ Giese, B.; Kretzschmer, G.; Meixner, J. Chem. Ber. 1980, 113, 2787. (26) Walling, C. Free Radicals in Solution, Wiley: New York, 1957; p 118

⁽²⁷⁾ Gottlieb, H. in The Chemistry of Enones; Patai, S.; Rappoport, Z., Eds.; Wiley: New York, 1989, Part 1; Chapter 5.

⁽²⁸⁾ Hayes, W. P.; Timmons, C. T. Spectrochim. Acta 1968, 24A, 323.

_

А	B^a	method ^b	rel react.c	react. of A^d
PhCH=NPh	I	Α	0.79	0.8
13	Ī	A	1.3	1.3
14	13	A	1.1	1.4
CH ₂ =CHSiPh ₃	I	В	1.6	1.6
CH ₂ =CHSPh	Ī	B	4.0	4.0
$PhCH=NHPh^+$	Ť	Å	4.0	4.0
PhCH=CHCOPh	Ť	A	5.8	5.8
CH-=CHS(O)Ph	CH.=CHSPh	B	2 75	11
CH_{2} = $CHS(O)Ph$	$CH_2 = CHSI II$	B	0.080	2 2
$4 CH_{2} = CHB_{1}$	U12-C113021 II	D A	0.000	10e
4-CH2-CHI y	I I	B	14	14
	1 T	D D	14	14
CH = CHP(O)(OEt)	T ·	D D	10	10
E_{12} $= CHF(U)(UEI)_2$		D D	0.64	19
$EIO_2CC = CH$		D D	0.04	20
(Z)-ElO ₂ CCH-CHCO ₂ El		D	0.56	51
$CH_2 = C(Me)CO_2Et$		D	00	55
$CH_2 = C(Me)CO_2Et$	EA CU = C(Db)CO Et	D	0.085	33
$CH_2 = C(Me)CO_2Et$	$CH_2 = C(Pn)CO_2Et$	В	0.13	40
$CH_2 = C(Me)CN$		B	59	59
$CH_2 = C(Me)CN$	EA	В	0.63	52
$CH_2 = C(Me)COPh$		В	/3	73
$CH_2 = C(Me)COPh$	MMA	В	1.2	70
$EtO_2CC \equiv CCO_2Et$	HC≡CCO₂Et	<u>f</u>	4.1	82
$CH_2 = CHCO_2Et$	Р	В	4.3	82
CH_2 =CHCOMe	EA	В	1.1	90
$CH_2 = CHSO_2Ph$	EA	В	1.1	90
$CH_2 = CHSO_2Ph$	P	В	5.8	110
$CH_2 = CHSO_2Ph$	MMA	В	1.6	93
$CH_2 = C(NHCOMe)CO_2Me$	EA	В	1.3	110
$CH_2 = C(NHCOMe)CO_2Me$	MMA	В	2.0	120
16	EA	В	1.8	150
$CH_2 = C(Ph)COPh$	$CH_2 = CHCOPh$	В	0.39	180
$CH_2 = C(Ph)COPh$	$CH_2 = C(Me)COPh$	В	2.7	170
15	16	В	1.2	180
$CH_2 = CHCOCMe_3$	EA	В	2.45	190
CH_2 =CHCOCMe ₃	CH_2 =CHCOMe	В	2.3	210
$CH_2 = C(SPh)CO_2Et$	EA	В	2.5	205
$CH_2 = C(SPh)CO_2Et$	MMA	В	3.6	210
$CH_2 = CHCN$	EA	В	2.6	210
CH ₂ =CHCN	$CH_2 = C(Me)CN$	В	3.9	230
$CH_2 = C(Ph)CO_2Et$	EA	В	3.7	300
$CH_2 = C(Ph)CO2Et$	$CH_2 = C(Ph)COPh$	В	1.8	320
$CH_2 = C(Ph)CO_2Et$	$CH_2 = C(NHCOCH_3)CO_2Me$	В	2.8	320
17	CH ₂ =CHCOPh	В	0.81	380
17	18	В	0.45	360
CH ₂ =CHCONHPh	$CH_2 = CHCOPh$	A	0.62	390
CH_2 =CHCOC ₆ H ₄ OMe- <i>p</i>	CH ₂ =CHCOPh	В	0.64	400
CH_2 =CHCOPh	EA	В	5.5	450
CH ₂ =CHCOPh	$CH_2 = C(Me)COPh$	В	6.9	490
(E)-EtO ₂ CCH=CHCO ₂ Et	EA	В	5.68	460
4-CH ₂ =CHPyH ⁺		A	> 500*	>500
$CH_2 = C(CI)COPh$	CH ₂ =CHCOPh	В	1./	710
18	AN CU — CUCODh	B	3.4	/50
	CH2=CHCOPh	В	1.7	800
$CH_2 = C(CI)CN$	$\frac{AN}{CH} = C(CI)CO E_{1}$	D D	4./	1000
(E) PCOCUTCHCOP		D D	0.07	900
(E)-FILCOCH-CHCOPh		D D	12	1000
(L)-FILOCH-CHCOFII		D	2.13	1600
$CH_2 = C(C1) CO_2 Et$ $CH_2 = C(C1) CO_2 Et$		a g	10	1200
$CH_2 = C(C1)CO_2Et$	$CH_{a} = C(Ph)CO_{a}Et$	ы Я	22	1100
N-methylmaleimide	FF	а Я	5.5	2800
N-methylmaleimide	FF	A	5.0 5.1	2300
(E)-NCCH=CHCN	NMM	A	2.5	6400
$CH_2 = C(CO2Et)_2$	EA	\overline{A}^h	~100	~8000
/-				

^{*a*} I = (*E*)-PhCH–CHI, EA = CH₂=CHCO₂Et, MMA = CH₂=C(Me)CO₂Et; AN = CH₂=CHCN; EF = diethyl fumarate; EM = diethyl maleate; NMM = *N*-methylmaleimide. ^{*b*} Method A, *t*-BuHgCl/Kl/hv at 35 °C; method B, *t*-BuHgCl/Et₃SiH at 25 °C. ^{*c*} As calculated from the observed alkylation products. ^{*d*}Relative to (*E*)-PhCH=CHI, k_{add} = 1.6 × 10⁴ L/mol-s at 25 °C; experimental uncertainty is estimated to be ±15%. ^{*c*} In the absence of a proton donor the reactivity depends on the concentration of *t*-BuHgX (because of complexation) and of KI (reversible *t*-Bu' addition). A rel react. of 9.8 was observed for 0.025 M 4-vinylpyridine with 4 equiv each of *t*-BuHgI and KI. ^{*f*} Photolysis with *t*-BuHgC1 to yield vinyl mercurials (ref 2) followed by NaBH₄ workup. ^{*s*} With Bu₃SnH, PhSiH₃, or NaBH₄ in Me₂SO. ^{*h*} In the presence of PTSA.

lactones, e.g., 13 and 14 or 15 and 16, have nearly the same reactivity towards *t*-Bu[•] with the *s*-cis exo-methylene compounds

15 and 16 being ca. 100 times more reactive than compounds with internal 1,2-disubstituted double bonds such as 13 or 14.

Experimental Section

¹H NMR spectra were obtained with a Nicolet NT300 spectrometer with tetramethylsilane as an internal standard. ¹³C NMR spectra were recorded with JEOL FX-900 and Nicolet NT300 spectrometers. ³¹P NMR spectra were obtained with a Bruker WM-300 spectrometer and reported in δ relative to external 85% phosphoric acid. Mass spectra were obtained with a Finnigan 4000 (INCOS data system) in the GC mode and high resolution spectra obtained by a Kratos MS-50 spectrometer. Infrared spectra were obtained with a Beckman IR 4250, Digital FTS-7FT, or IBM IR-98FT spectrometers. Neat spectra were recorded between NaCl plates. Elemental analyses were performed by Galbraith Laboratories, Inc. All mp's were determined on a Thomas-Hoover capillary melting point apparatus and are uncorrected. Most products were isolated by flash column chromatography on silica gel (Kiesel gel 60, 230-400 mesh ASTM) usually with hexane (99%)ethyl acetate (1%). Analytical gas chromatography was performed with a Varian 3700 chromatograph with a Hewlett Packard 3390A integrator employing toluene, naphthalene, or biphenyl as the internal standard. Photostimulated reactions utilized a Sylvania 275 W fluorescent sunlamp or a Rayonet Photoreactor (350 nm) and Pyrex reaction vessels. Both irradiation sources maintained the reaction mixtures at ca. 35-40 °C.

Solvents and Materials. Me₂SO was stirred over CaH₂ for 12 h at 80 °C, distilled, and stored over 4A molecular sieves. Benzene and THF were refluxed with Ph₂C=O/Na followed by distillation and storage over molecular sieves. Carbon tetrachloride was distilled from P₂O₅.

Alkylmercury halides were prepared according to literature procedures.²⁹ tert-Butylmercury chloride (mp 110–113 °C) was prepared in 50% yield after recrystallization from hexane (90%)–ethanol (10%) by reaction of t-BuMgCl with HgCl₂ in THF at 0 °C. The mercurial was stored in the absence of light at 0 °C. In CH₃CN the λ_{max} of 210 nm was not affected by 1–3 equiv of vinyl phosphonate. Di-tertbutylmercury, mp 52–55 °C, was prepared by a literature procedure.³⁰ t-BuHgI was prepared by reaction of t-BuHgCl (0.03 mol) with KI (0.06 mol) in 50 mL of Me₂SO.³¹ After 2 h at 25 °C the solution was treated with 100 mL of water and extracted with Et₂O. After drying over MgSO₄ the solvent was evaporated to give white crystals which turned yellow when exposed to air [¹H NMR (CDCl₃) δ 1.54 (s, 9 H); ¹H NMR (Me₂SO-d₆) δ 1.43 (s, 9 H)]. The compound decomposes upon heating and does not give a well-defined mp.

The preparation of substrates that were not available from Aldrich Chemical Co. are summarized in the supplementary material.

General Procedure for Reactions of RHgCl with Alkenyl Substrates (Table 1). A Pyrex tube containing RHgX and the substrate in PhH or Me₂SO under a positive pressure of N_2 was irradiated at 35-40 °C. The reaction product was transferred to a flask and treated with either solid NaBH₄ or I₂. For the NaBH₄ reduction, a few drops of water were added after 10 min. The product was hydrolyzed, separated from mercury metal, extracted with Et₂O, concentrated, and isolated by flash column chromatography. The iodine cleavage was allowed to proceed for 4-8 h in PhH after which HgI₂ was removed by filtration. The filtrate was washed until colorless with 5% aqueous Na₂S₂O₃, dried over MgSO₄, and concentrated to afford a reaction product which was purified by flash column chromatography. The crude or purified iodides were converted to alkenes by reaction with 3 equiv of diazabicycloundecane in PhH or neat at 80-90 °C. The product was dissolved in Et₂O and washed with 5% aqueous Na₂S₂O₃ and water, dried over MgSO4, and after concentration purified by flash column chromatography.

Reaction Products from Diethyl Vinyl Phosphonate. Diethyl 3,3-Dimethylbutylphosphonate (4a, R = t-Bu). ¹H NMR (CDCl₃) δ 4.11 (p, J = 4.2 Hz, 4 H), 1.76–1.62 (m, 2 H), 1.53–1.39 (m, 2 H), 1.33 (t, 6 H), 0.90 (s, 9 H); ¹³C NMR (CDCl₃) δ 61.4 (d, $J_{COP} = 6.1$ Hz), 35.8 (d, $J_{CCP} = 6.1$ Hz), 29.4 (d, $J_{CCCP} = 6.1$ Hz), 28.7, 21.2 (d, $J_{CP} = 141.6$ Hz), 16.4 (d, $J_{CCOP} = 6.1$ Hz); ³¹P NMR (C₆D₆) δ 33.43; GC and HRMS m/z (%) calcd for C₁₀H₂₂O₃P (M⁺ – H) 221.1306; found 222 (0.2), 221.1304 (1.1), 207 (49), 166 (58), 165 (100), 151 (52), 138 (96), 111 (63), 57 (66); IR (neat) $\nu = 2980$, 2870, 1470, 1440, 1390, 1360, 1245, 1155, 1058, 960, 780 cm⁻¹. Anal. Calcd for C₁₀H₂₃O₃P: C, 54.02; H, 10.46; P, 13.94. Found: C, 54.24; H, 10.06; P, 13.70.

Diethyl 1-Iodo-3,3-dimethylbutylphosphonate. ¹H NMR (CDCl₃) δ 4.17 (p, J = 7.1 Hz, 4 H), 2.41–1.93 (m, 3 H), 1.34 (t, 6 H), 0.93 (s, 9 H); ¹³C NMR (CDCl₃) δ 63.5 (t, $J_{COP} = 12.2$ Hz), 36.6, 31.7 (d, $J_{CCCP} = 12.2$ Hz), 29.2, 16.25 (d, $J_{CCOP} = 6.1$ Hz), 8.64 (d, $J_{CP} = 153.8$ Hz); ³¹P NMR (C₆D₆) δ 23.68; GC and HRMS m/z (%) calcd for C₁₀H₂₂IO₃P 348.0351; found 349 (0.08), 348.0352 (0.85), 347 (0.02), 221 (24), 165 (83), 137 (18), 109 (45), 83 (87), 57 (100); IR (neat) $\nu = 2990-2880, 1475, 1445, 1395, 1370, 1255, 1160, 1060-1020, 970, 820-780, 750 cm⁻¹.$

Diethyl 3,3-Dimethyl-1-butenylphosphonate (**5a**, **R** = *t*-**Bu**). The alkene was prepared in 90% yield from 0.1 g of *t*-BuCH₂CH(I)P(O)-(OEt)₂ and 0.13 g of DBU at 90 °C for 4 h: ¹H NMR (CDCl₃) δ 6.80 (d of d, $J_{H,P} = 24$ Hz, $J_{H,H} = 17.6$ Hz, 1 H), 5.50 (d of d, $J_{H,P} = 20$ Hz, $J_{H,H} = 17.6$ Hz, 1 H), 4.32–3.80 (p, J = 7.5 Hz, 4 H), 1.30 (t, J = 7.5 Hz, 6 H), 1.07 (s, 9 H); ¹³C NMR (CDCl₃) δ 162.7 (d, $J_{CCP} = 3.67$ Hz), 111.6 (d, $J_{CP} = 188.0$ Hz), 61.13 (d, $J_{POCC} = 4.89$ Hz), 35.51 (d, $J_{CCCP} = 4.89$ Hz), 28.09, 15.98 (d, $J_{POCC} = 6.1$ Hz); ³¹P NMR (CDCl₃) δ 20.70; GC and HRMS m/z (%) calcd for C₁₀H₂₁O₃P 220.1228, found 222 (0.8), 221 (7.4), 220.1226 (39), 204 (35), 163 (19), 149 (44), 138 (54), 111 (60), 110 (19), 83 (100). IR (neat) $\nu = 2575 - 2880, 1630, 1480, 1395, 1370, 1250, 1165, 1060, 1030, 970, 850, 820, 780 cm⁻¹.$

Tetraethyl 2,2,7,7-Tetramethyloctane-4,5-diphosphonate. Photolysis for 24 h of *t*-BuHgCl and CH₂=CHP(O)(OEt)₂ in a 1:1 mole ratio in Me₂SO followed workup with aqueous Na₂S₂O₃ and CH₂Cl₂ extraction yielded *t*-BuCH₂CH₂P(O)(OEt)₂, *t*-BuCH=CHP(O)(OEt)₂, and *t*-BuCH₂CH[P(O)(OEt)₂]CH[P(O)(OEt)₂]CH₂Bu-*t* in a 1:1:1.5 ratio. The diphosphonate was formed as an ~1:1 mixture of diastereomers having GCMS m/z (%) = 427 (M-CH₃⁺, 0.3), 385 (28), 305 (23), 222 (M⁺/2, 91), 165 (8), 138 (5), 170 (10), 135 (9), 111 (20), 109 (35), 57 (100) and 427 (M-CH₃⁺, 1), 385 (4), 305 (5), 221 (M⁺/2, 75), 165 (51), 138 (4), 137 (8), 135 (6), 111 (16), 104 (30), 57 (100).

Diethyl 3,3,3-Trichloropropylphosphonate (4a, R = CCl₃). Reaction of *t*-BuHgCl (2 mmol) with CH₂=CHP(O)(OEt)₂ (0.5 mmol) in CCl₄ (10 mL) for 24 h in a Rayonet Photoreactor precipitated hexachloroethane [mp 189–193 °C; ¹³C NMR (CDCl₃) δ 104.9]. Reduction with NaBH₄ followed by CH₂Cl₂ extraction yielded 62% of the crude phosphonate isolated in 52% yield by flash column chromatography: ¹H NMR (CDCl₃) δ 4.16 (p, *J* = 8.3 Hz, 4 H), 3.08–2.83 (m, 2 H), 2.41–2.01 (m, 2 H), 2.36 (t, *J* = 8.3 Hz, 5 H); ¹³C NMR (CDCl₃) δ 99.00 (d, *J*_{PCCC} = 29.3 Hz), 61.92 (d, *J*_{POC} = 6.1 Hz), 48.40, 23.40 (d, *J*_{PC} = 142.8 Hz), 16.30 (d, *J*_{POCC} = 6.1 Hz); GC and HRMS *m/z* (%) calcd for C₇H₁₄Cl₂O₃P (M⁺ – Cl) 247.0059, found 287 (0.7), 285 (0.5), 282 (0.6), 257 (20), 255 (10), 249 (35), 247.0059 (50), 165 (61), 109 (100), 55 (87), IR (neat) ν = 2950–2930, 1430, 1390, 1255, 1220, 1160, 1050, 975, 950, 840, 790–770, 750 cm⁻¹.

Diethyl 3,3,3-Trichloro-1-lodopropylphosphonate. Iodine cleavage of the mercurial gave 60% of the crude phosphonate isolated in 40% yield by flash column chromatography: ¹H NMR (CDCl₃) δ 4.24 (p, J = 7.9 Hz, 4 H), 3.62–3.16 (m, 3 H), 1.40 (t, J = 7.9 Hz, 6 H); ¹³C NMR (CDCl₃) δ 97.13 (d, $J_{PCCC} = 18.3$ Hz), 63.68 (t, $J_{POC} = 12.2$ Hz), 56.80 (d, $J_{POCC} = 6.1$ Hz), 5.26 (d, $J_{PC} = 155$ Hz); ³¹P NMR (CDCl₃) δ 20.96; GC and HRMS m/z (%) calcd for C₇H₁₃Cl₃IO₃P 407.8713, found 411 (0.03), 410 (1.6), 407.8713 (1.5), 191 (31), 189 (46), 111 (20), 109 (100), 81 (69), 65 (46); IR (neat) $\nu = 2950-2920$, 1440, 1420, 1390, 1260, 1190, 1160, 1050, 1020, 970, 840, 770, 720, 690 cm⁻¹.

Diethyl 3,3,3-Trichloro-1-propenylphosphonate (5a, $R = CCl_3$). Reaction of the iodide (0.08 g, 0.2 mmol) with DBU (0.09 g, 0.6 mmol) in 6 mL of PhH at 90 °C for 4 h yielded 68% of the phosphonate: ¹H

⁽²⁹⁾ Makarova, L. G.; Nesmeyanov, A. N. The Organic Compounds of Mercury; North-Holland Publishing Co.: Amsterdam, 1967; Vol. 4.

⁽³⁰⁾ Nugent, W. A.; Kochi, J. K. J. Organomet. Chem. **1977**, 124, 371. (31) Seyferth, D.; Towe, R. H. Inorg. Chem. **1962**, 1, 185.

⁽³²⁾ Bordwell, F. G.; Drucker, G. E.; McCollum, G. J. J. Org. Chem. 1982, 47, 2504.

⁽³³⁾ Hershberger, J.; Russell, G. A. Synthesis 1980, 475.

⁽³⁴⁾ Manescalchi, F.; Orena, M.; Savoia, D. Synthesis 1979, 445.

⁽³⁵⁾ Lewis, L. N.; Sy, K. G.; Bryant, G. L.; Donahue, P. E. Organometallics **1991**, 10, 3750.

⁽³⁶⁾ Boustany, K. J. Chem. Eng. Data 1972, 17, 104.

⁽³⁷⁾ Hartmann, J.; Muthukrishnan, R.; Schlosser, M. Helv. Chim. Acta 1974, 57, 2261.

NMR (CDCl₃) δ 7.05 (d of d, $J_{P,H} = 19.6$, $J_{H,H} = 15.5$ Hz, 1 H), 6.31 (d of d, $J_{P,H} = 15.3$ Hz, $J_{H,H} = 15.5$ Hz), 4.16 (p, J = 8.97 Hz, 4 H), 1.35 (t, J = 8.97 Hz, 6 H); ¹³C NMR (CDCl₃) δ 149 (d, $J_{CCP} = 10.19$ Hz), 118.2 (d, $J_{CP} = 186.2$ Hz), 65.58, 62.44, 16.14; ³¹P NMR (CDCl₃) δ 6.84; GC and HRMS m/z (%) calcd for $C_7H_{12}Cl_2O_3P$ (M⁺ – Cl) 244.9901, found 282 (2.0), 280 (M⁺, 2.5), 247 (39) 244.9904 (62), 219 (65), 217 (100), 211 (15), 209 (25), 191 (26), 189 (39), 183 (17), 181 (37), 153 (72), 109 (82); IR (neat) $\nu = 3250, 2990-2970, 1560, 1530, 1300, 1250, 1150, 1120, 1060, 980$ cm⁻¹.

Diethyl 3-Methylbutylphosphonate (4a, $\mathbf{R} = i$ -Pr). Material isolated by flash column chromatography had ¹H NMR (CDCl₃) δ 4.33 (p, J = 7.5 Hz, 4 H), 1.90–1.38 (m, 5 H), 1.33 (t, J = 7.5 Hz, 6 H), 0.90 (d, 6 H); ¹³C NMR (CDCl₃) δ 61.21 (d, $J_{POC} = 6.11$ Hz), 30.90 (d, $J_{PCCC} = 4.88$ Hz), 29.01, 23.51 (d, $J_{PC} = 140.4$ Hz), 21.80, 16.30 (d, $J_{POCC} = 6.1$ Hz); ³¹P NMR (CDCl₃) δ 33.39; GC and HRMS m/z (%) calcd for C₉H₂₀O₃P (M⁺ – H) 207.1150, found 209 (0.20), 208 (0.14), 207.1149 (1.7), 165 (69), 152 (100), 138 (58), 137 (49), 125 (82), 111 (59), 109 (38), 69 (41); IR (neat) $\nu = 2970$, 1450, 1380, 1360, 1240, 1210, 1155, 1090, 1060, 1010, 960 cm⁻¹. Anal. Calcd for C₉H₂₁O₃P: C, 51.89; H, 10.19; P, 14.88. Found: C, 51.63; H, 10.06; P, 14.79.

Diethyl 1-Iodo-3-methylbutylphosphonate. ¹H NMR (CDCl₃) δ 4.21 (p, J = 7.13 Hz, 4 H), 2.24–1.58 (m, 4 H), 1.34 (t, J = 7.13 Hz, 6 H), 0.96 (d of d, 6 H); ¹³C NMR (CDCl₃) δ 63.10 ((t, $J_{POC} = 10.98$ Hz), 41.09 (d, $J_{PCCC} = 2.44$ Hz), 27.71 (d, $J_{PCC} = 12.2$ Hz), 22.51, 16.14 (d, $J_{PC} = 157.5$ Hz), 16.03 (d, $J_{POCC} = 6.1$ Hz); ³¹P NMR (CDCl₃) δ 23.57; GC and HRMS m/z (%) calcd for C₉H₂₀IO₃P 334.0194, found 335 (0.04), 334.0190 (0.4), 207 (40), 179 (9), 165 (12), 151 (65), 137 (9), 109 (36), 91 (23), 69 (100); IR (neat) $\nu = 2900-2880, 1470, 1390-1370, 1245, 1050, 1025, 970, 810, 730$ cm⁻¹.

Diethyl 3-Methyl-2-butenylphosphonate (**5a**, **R** = *i*-**Pr**). Elimination of HI from the iodide by DBU at 90 °C formed the nonconjugated alkene in 52% yield: ¹H NMR (CDCl₃) δ 5.18 (m, 1 H), 4.15 (p, *J* = 7.8 Hz, 4 H), 2.48 (d of d, J_{HCP} = 22 Hz, $J_{H,H}$ = 8.4 Hz, 2 H), 1.75 (s, 3 H), 1.68 (s, 3 H), 1.31 (t, *J* = 7.8 Hz, 6 H); ¹³C NMR (CDCl₃) δ 136.1 (d, $J_{C,P}$ = 14.7 Hz), 112.25 (d, $J_{C,P}$ = 11.0 Hz), 61.11 (d, J_{POC} = 6.1 Hz), 25.95 (d, J_{PC} = 140.4 Hz), 25.05, 17.36; 15.87 (d, J_{POCC} = 6.1 Hz); ³¹P NMR (CDCl₃) δ 29.24; GC and HMRS *m/z* (%) calcd for C₉H₁₉O₃P 206.1073, found 208 (0.4), 207 (4.7), 206.1075 (41), 150 (46), 138 (48), 111 (100), 97 (27), 83 (49), 82 (76), 81 (37), 69 (79), 68 (31); IR (neat) ν = 2990–2960, 1520, 1470, 1330, 1300, 1150–1120, 1050 cm⁻¹.

Diethyl 2-Cyclohexylethylphosphonate (4a, $\mathbf{R} = c \cdot C_6 H_{11}$). ¹H NMR (CDCl₃) δ 4.30 (p, J = 7.15 Hz, 4 H), 2.20–1.32 (m, 15 H), 1.30 (t, J = 7.15 Hz, 6 H); GCMS: m/z (%) = 248 (M⁺, 0.3), 247 (0.7), 166 (28), 165 (89), 152 (100), 138 (49).

Diethyl 2-Cyclohexyl-1-iodoethylphosphonate. ¹H NMR (CDCl₃) δ 4.18 (p, J = 5.05 Hz, 4 H), 2.28–1.61 (m, 3 H), 1.36 (t, J = 5.05 Hz, 6 H), 1.31–1.20 (m, 11 H); GCMS m/z (%) = 374 (M⁺, 0.06), 247 (0.09), 165 (54), 138 (100), 125 (39), 109 (26), 55 (40).

Diethyl Hexylphosphonate (4a, $\mathbf{R} = \mathbf{Bu}$). ¹H NMR (CDCl₃) δ 4.11 (p, J = 7.0 Hz, 4 H), 2.41–1.25 (m, 10 H), 1.4 (t, J = 7.0 Hz, 6 H), 0.95 (t, 3 H); ¹³C NMR (CDCl₃) δ 61.13 (d, $J_{POC} = 5.86$ Hz), 31.02, 30.37, 29.65, 25.39 (d, $J_{CP} = 145$ Hz), 18.08, 16.19 (d, $J_{POCC} =$ 5.86 Hz), 13.72; ³¹P NMR (CDCl₃) δ 33.19; GC and HRMS m/z (%) calcd for C₁₀H₂₂O₃P (M⁺ – H) 221.1307, found 222 (1.5), 221.1305 (5.1), 166 (29), 165 (100), 138 (27), 111 (16), 55 (29); IR (neat) $\nu =$ 2980, 2960–2920, 2880, 1450, 1380, 1245, 1160, 1030, 950 cm⁻¹. Anal. Calcd for C₁₀H₂₃O₃P: C, 54.02; H, 10.46; P, 13.94. Found: C, 54.06; H, 10.47; P, 13.92.

Reaction Products from Phenyl Vinyl Sulfone. 3,3-Dimethyl-1-(Phenylsulfonyl)butylmercury Chloride (2, $\mathbf{R} = t$ -Bu, EWG = PhSO₂). Photolysis at 350 nm of CH₂=CHSO₂Ph (0.12 mmol) and *t*-BuHgCl (0.6 mmol) in C₆D₆ for 3 h completely consumed the CH₂=CHSO₂Ph and 50% of the *t*-BuHgCl. Aqueous workup and CH₂-Cl₂ extraction yielded 44% of the mercurial: ¹H NMR (C₆D₆) δ 7.93-7.87 (m, 2 H), 7.15-7.08 (m, 3 H), 3.65 (dd, J = 11.7, 1.8 Hz, 1 H), 2.20 (dd, J = 14.1, 11.7 Hz, 1 H), 1.67 (dd, J = 14.1, 1.8 Hz, 1 H), 0.69 (s, 9 H). The mercurial was unstable to GC conditions but could be reduced to *t*-BuCH₂CH₂CN₂Ph by NaBH₄ in 80% yield. **3,3-Dimethylbutyl Phenyl Sulfone** (4b, $\mathbf{R} = t$ -Bu). Isolated material with mp 52–53.5 °C (lit.³¹ mp 59–60 °C) had the expected IR, NMR and GCMS; HRMS *m*/*z* calcd for C₁₂H₁₈O₂S 226.1028, found 226.1031.

1-Iodo-3,3-dimethylbutyl Phenyl Sulfone. Isolated material had mp 98–100 °C; ¹H NMR (CDCl₃) δ 8.13–7.40 (m, 5 H), 4.84 (d of d, 1 H), 2.12 (q, 2 H), 0.90 (s, 9 H); ¹³C NMR (CDCl₃) δ 134.7, 134.3, 130.1, 129.1, 46.80, 37.10, 31.31, 29.25; GC and HRMS *m*/*z* (%) calcd for C₁₂H₁₇IO₂S 351.9995, found 354 (0.06), 353 (0.2), 351.9998 (1.3), 211 (16), 169 (10), 143 (14), 125 (13), 83 (15), 77 (14), 57 (100); IR (KBr pellet), ν = 3000–2900, 1590, 1480, 1455, 1400, 1350, 1330–1305, 1200, 1155, 1090, 780, 760, 735, 690 cm⁻¹.

3,3-Dimethyl-1-butenyl Phenyl Sulfone (**5b**, $\mathbf{R} = t$ -**Bu**). Elimination of HI by DBU in PhH gave 78% of the alkene whose NMR, GCMS and IR were consistent with lit. values:³² HRMS m/z calcd for $C_{12}H_{16}O_2S$ 224.0871, found 224.0869.

3-Methylbutyl Phenyl Sulfone (**4b**, **R** = *i*-**Pr**). ¹H NMR (CDCl₃) δ 7.80–7.44 (m, 5 H), 3.06 (t, 2 H), 1.71–1.49 (m, 3 H), 0.87 (d, 6 H); ¹³C NMR (CDCl₃) δ 138.95, 133.4, 129.0, 127.7, 54.38, 30.77, 26.91, 21.80; GC and HRMS *m*/*z* (%) calcd for C₁₁H₁₆O₂S, 212.0871, found 212.0870 (0.14), 143 (100), 78 (20), 77 (34), 70 (39), 55 (22), IR (neat) ν = 3070, 2980, 2890, 1590, 1470, 1450, 1370, 1320, 1280, 1150, 1090, 790, 690 cm⁻¹.

1-Iodo-3-methylbutyl Phenyl Sulfone. Isolated material had ¹H NMR (CDCl₃) δ 8.05–7.50 (m, 5 H), 4.90 (dd, 1 H), 1.98–1.70 (m, 3 H), 0.99 (m, 6 H); ¹³C NMR (CDCl₃) δ 134.94, 134.25, 129.79, 129.00, 44.01, 41.16, 27.99, 22.93; GC and HRMS *m*/*z* (%) calcd for C₁₁H₁₅IO₂S 337.9838, found 340 (0.2), 337.9836 (4.8), 211 (30), 197 (43), 143 (75), 125 (37), 77 (38), 69 (100); IR (neat) ν = 3080, 2980, 2940, 2880, 1580, 1470, 1450, 1390, 1370, 1310, 1150, 1080, 750, 710, 690 cm⁻¹.

3-Methyl-2-butenyl Phenyl Sulfone (**5b**, **R** = *i*-**Pr**). Elimination of DBU in refluxing PhH for 6 h gave in 92% of the nonconjugated alkene; ¹H NMR (CDCl₃) δ 7.95–7.48 (m, 5 H), 5.19 (t, 1 H), 3.79 (d, 2 H), 1.65 (s, 3 H), 1.28 (s, 3 H); ¹³C NMR (CDCl₃) δ 133.4, 129.2, 128.9, 128.3, 127.9, 110.3, 56.12, 25.80, 17.66; GC and HRMS *m/z* (%) calcd for C₁₁H₁₄O₂S 210.0715, found 212 (0.03), 211 (0.07), 210.0718 (0.6), 131 (1), 79 (2), 77 (8), 70 (8), 69 (100), 68 (4), 67 (5), 51 (7); IR (neat) ν = 3060, 2980, 2940, 2870, 1670, 1620, 1590, 1450, 1310, 1240, 1150, 1090, 770, 740, 690 cm⁻¹.

2-Cyclohexylethyl Phenyl Sulfonate (4b, $\mathbf{R} = c \cdot C_6 H_{11}$). ¹H NMR (CDCl₃) δ 7.90–7.40 (m, 5 H), 3.05 (t, 2 H), 1.53–1.48 (m, 2 H), 1.26–1.19 (m, 11 H); GCMS m/z (%) = 254 (0.2), 253 (0.6), 252 (M⁺, 0.7), 187 (17), 143 (100), 110 (87), 81 (49), 77 (40), 55 (97).

2-Cyclohexyl-1-iodoethyl Phenyl Sulfone. ¹H NMR (CDCl₃) δ 8.10–7.70 (m, 5 H), 4.85 (d of d, 1 H), 2.10–1.97 (m, 2 H), 1.36–1.19 (m, 11 H); GCMS m/z (%) = 380 (0.02), 379 (0.06), 378 (M⁺, 0.7), 251 (13), 143 (36), 109 (100), 83 (33), 77 (26), 67 (34).

Hexyl Vinyl Sulfone (4b, $\mathbf{R} = \mathbf{Bu}$). IR, GCMS, and NMR were consistent with literature values:³³ HMRS calcd for C₁₂H₁₈O₂S 226.1076, found 226.1022.

Reaction Products from Vinyl Triphenylsilane. 3,3-Dimethyl-1-(triphenylsilyl)butylmercury Chloride. Sunlamp photolysis of CH₂=CHSiPh₃ with 4 equiv of *t*-BuHgCl in Me₂SO for 24 h followed by aqueous Na₂S₂O₃ workup, and CH₂Cl₂ extraction gave 50% of the mercurial and 5% of *t*-BuCH₂CH₂SiPh₃. The mercurial had ¹H NMR (CDCl₃) δ 7.70–7.60 (m, 2 H), 7.50–7.30 (m, 3 H), 2.47 (dd, *J* = 12.6, 1.8 Hz, 1 H), 2.17 (dd, *J* = 15.0, 1.8 Hz, 1 H), 1.80 (dd, *J* = 15.0, 12.6 Hz, 1 H), 0.995 (s, 9 H).

(3,3-Dimethylbutyl)triphenylsilane (4c, $\mathbf{R} = t$ -Bu). ¹H NMR (CDCl₃) 7.53-7.48 (m, 6 H), 7.41-7.32 (m, 9 H), 1.34 (m, 4 H), 0.87 (s, 9 H); ¹³C NMR 135.62, 135.53, 129.28, 127.78, 37.67, 31.36, 28.80, 7.49; GC and HRMS m/z (%) calcd for C₂₄H₂₈Si 344.1960, found 344.1958 (0.2), 260 (22), 259 (100), 183 (12), 181 (39), 180 (14), 155 (13), 105 (38), 57 (8), 41 (9).

(*E*)-(3,3-Dimethyl-1-butenyl)triphenylsilane (5c, $\mathbf{R} = t$ -Bu). The compound was isolated as a solid, mp 84-86 °C with spectral data consistent with literature values.³⁴

Reaction Products from Phenyl Vinyl Sulfide. Photolysis of *t*-BuHgCl or *t*-BuHgI with CH₂—CHSPh gave low yields of *t*-BuCH₂-CH₂SPh, *t*-BuCH=CHSPh, and *t*-BuCH₂CH(SPh)CH(SPh)CH₂Bu-*t* in the presence or absence of added iodide ion. Reaction with 4 equiv of

t-BuHgCl and 4 equiv of Et₃SiH for 24 h in Me₂SO gave 52% of t-BuCH₂CH₂SPh and 5% of t-BuCH=CHSPh.

3,3-Dimethylpropyl Phenyl Sulfide (4d, R = t-Bu).³⁵ GCMS *m/z* (%) = 194 (M⁺, 35), 137 (83), 123 (66), 110 (84), 109 (37), 85 (15), 84 (12), 77 (20), 69 (22), 65 (27), 57 (100).

(*E*)-**3,3-Dimethyl-1-propenyl Phenyl Sulfide** (**5d**, **R** = t-**Bu**).³⁶ GCMS m/z (%) = 192 (M⁺, 53), 177 (94), 135 (28), 110 (17), 109 (20), 91 (19), 83 (100), 77 (20), 57 (12).

2,2,7,7-Tetramethyl-4,5-bis(phenylthio)octane. The dimer was formed as an \sim 1:1 mixture of two diastereomers; GCMS m/z (%) = 386 (M⁺, 0.4), 277 (19), 193 (9), 137 (42), 111 (8), 110 (5), 109 (6), 69 (10), 57 (100) and 386 (M⁺, 0.2), 277 (3), 193 (8), 137 (43), 111 (4), 110 (4), 109 (6), 69 (7), 57 (100).

General Procedure for the Reactions of Alkylmercury Halides in Presence of Iodide Salts. Sodium, potassium, or ammonium iodide was dissolved in 5-10 mL of deoxygenated Me₂SO in a Pyrex tube with a rubber septum under a positive nitrogen pressure. The alkylmercury halide was added followed by the α,β -unsaturated compound. The reaction mixture was irradiated with a 275 W sunlamp placed 15-25 cm from the reaction flask. Usually a dark brown solution resulted after 1 h of irradiation. For workup, 22 mL of aqueous Na₂S₂O₃ was added, and the mixture was stirred for 10 min. The mixture was extracted with CH₂Cl₂, and the extract was dried over MgSO₄ and concentrated. The reaction product was analyzed by GLC, and pure products were isolated by flash column chromatography. Yields were usually determined by ¹H NMR integration with toluene as an internal standard. Many of the reactions in the presence of I⁻ proceed in the dark at 25 °C by a thermally initiated free radical chain leading to the adduct organomercurial whose formation can be monitored by ¹H NMR in Me₂SO-d₆. In the presence of NH₄⁺ the organomercurials are slowly cleaved to form the reductive alkylation product. The reactions are not appreciably affected by the presence of 10 mol % water.

General Procedure for the Alkylation of Alkenes by RHgX in the Presence of Silanes. The substrate (0.1 mmol) and alkylmercury halide were dissolved in 4 mL of deoxygenated Me₂SO under positive nitrogen pressure in a Pyrex tube equipped with a rubber septum. A silyl hydride (0.4 mmol) was added by syringe, and the reaction was stirred until the precipitation of metallic mercury ceased. The reaction mixture was added to 15 mL of saturated aqueous Na₂S₂O₃ and worked up in the standard manner.

Alkylation of Acrylate Esters. The properties of most of the alkylation products are given in the supplementary material. Photolysis of mixtures of t-BuHgCl or t-BuHgI and ethyl acrylate followed by NaBH₄ reduction produced t-BuCH₂CH(CO₂Et)CH₂CH₂CO₂Et: GCMS m/z (%) = 259 (M⁺ + 1, 0.4), 243 (7), 214 (13), 213 (100), 202 (18), 201 (76), 197 (20), 185 (11), 169 (60), 158 (22), 157 (22), 156 (34), 155 (93), 151 (33), 139 (29), 129 (17), 128 (88), 127 (25), 115 (21), 102 (39), 101 (38), 99 (22), 97 (25), 95 (38), 88 (9), 83 (29), 81 (14), 73 (16), 69 (20), 67 (11), 57 (85). Also detected by GCMS were t-BuCH₂CH(CO₂Et)CH₂CH(CO₂Et)Bu-t and t-BuCH₂CH(CO₂Et)CH₂-CH(CO₂Et)CH₂CH(CO₂Et)Bu-t. On the other hand, photolysis or dark reactions of t-BuHgCl or t-BuHgI in the presence of KI gave excellent yields of t-BuCH2CH2CO2Et after hydrolytic workup. Photolysis of (t-Bu)₂Hg with CH₂=CHCO₂Et in PhH also produced a variety of products including t-BuCH₂CH₂CO₂Et (18%), t-BuCH=CHCO₂Et (5%), t-BuCH₂CH(CO₂Et)Bu-t (5%), and two diastereomers of t-BuCH₂-CH(CO₂Et)CH(CO₂Et)CH₂Bu-t (7%).

Ethyl 2,4,4-Trimethylpentanoate (4e). The isolated material had ¹H NMR (CDCl₃) δ 4.11 (q, J = 7.2 Hz, 2 H), 2.48 (m, 1 H), 1.85 (dd, J = 14.1, 9.3 Hz, 1 H), 1.25 (t, J = 7.2 Hz, 3 H), 1.16 (dd, J = 14.1, 3.0 Hz, 1 H), 1.15 (d, J = 7.2 Hz, 3 H), 0.88 (s, 9 H); ¹³C NMR (CDCl₃) δ 178.02, 60.19, 47.81, 36.32, 30.84, 29.45, 20.45, 14.19; HRMS *m*/z calcd for C₁₀H₂₀O₂ 172.1463, found 172.1462.

Ethyl 2-(2,2-Dimethylpropyl)-4,4-dimethylpentanoate (7). ¹H NMR (CDCl₃) 4.08 (q, J = 7.2 Hz, 2 H), 2.48 (m, 1 H), 1.73 (dd, J = 14.1, 9.3 Hz, 2 H), 1.255 (t, J = 7.2 Hz, 3 H), 1.23 (dd, J = 14.1, 6.0 Hz, 2 H), 0.89 (s, 18 H); ¹³C NMR (CDCl₃) δ 178.5(s), 60.1(t), 49.3-(t), 38.4(d), 31.2(s), 29.5(q), 14.0(q); GCMS, m/z (%) = 229 (M + 1⁺, 10), 213 (85), 157 (37), 142 (35), 129 (33), 102 (55), 83 (48), 57 (100).

Diethyl (2,2-Dimethylpropyl)malonate. ¹H NMR (CDCl₃) δ 4.16 (m, 4 H), 3.37 (t, J = 6.0 Hz, 1 H), 1.92 (d, J = 6.3 Hz, 2 H), 1.24 (t, J = 7.2 Hz, 6 H), 0.89 (s, 9 H); GCMS, m/z (%) = 231 (M + 1⁺, 0.5), 215 (20), 185 (38), 175 (33), 141 (54), 128, 86, 101 (65), 73 (39), 57 (100).

Bis(1,1-dimethylethyl) (2,2-Dimethylpropyl)malonate. ¹H NMR (CDCl₃) δ 3.17 (t, J = 6.0 Hz, 1 H), 1.83 (d, J = 6.0 Hz, 2 H), 1.455 (s, 18 H), 0.90 (s, 9 H); ¹³C NMR (CDCl₃) δ 169.6 (s), 81.14 (s), 50.83 (d), 41.67 (t), 30.41 (s), 29.25 (q), 27.89 (q); HRMS *m*/*z* calcd for C₁₂H₂₁O₃ (M⁺ – OCMe₃) 213.1491, found, 213.1486.

Diethyl (1,2,2-Trimethylpropyl)maleate. Sunlamp photoysis of 0.05 M diethyl ethylidenemalonate with 4 equiv of *t*-BuHgCl and 8 equiv. of KI in Me₂SO for 19 h produced 50% of the reductive alkylation product whose yield was increased to 64% by the addition of 2 equiv of K₂S₂O₈: ¹H NMR (CDCl₃) δ 4.23-4.13 (m, 4 H), 3.51 (d, J = 5.4 Hz, 1 H), 2.24 (dq, J = 5.2, 7.2 Hz, 1 H), 1.30-1.23 (m, 6 H), 1.01 (d, J = 7.2 Hz, 3 H), 0.90 (s, 9 H); GC and HRMS m/z (%) calcd for C₁₂H₂₁O₄ (M - 15) 229.1434, found 245.1753 (M + 1⁺, 9), 229.1439 (15), 199 (50), 142 (9), 115 (100); CIMS (NH₃) m/z = 245; FTIR (neat) $\nu = 2972$, 1755, 1732 cm⁻¹.

Diethyl (2,2-Dimethyl-1-phenylpropyl)malonate. Sunlamp photolysis of 0.05 M diethyl benzalmalonate with 4 equiv each of *t*-BuHgI and KI for 19 h gave 70% of the alkylation product: ¹H NMR (CDCl₃) δ 7.26–7.12 (m, 5 H), 4.22 (m, 2 H), 3.98 (d, J = 11.1 Hz, 1 H), 3.71 (dq, J = 3.3, 6.9 Hz, 2 H), 1.30 (t, J = 6.9 Hz, 3 H), 0.88 (s, 9 H), 0.80 (t, J = 6.9 Hz, 3 H); GC and HRMS m/z (%) calcd for C₁₈H₂₆O₄ 306.1831, found 307 (0.1), 306.1830 (0.03), 291 (1), 250 (47), 176 (100); FTIR (neat) $\nu = 2974$, 1759, 1732 cm⁻¹.

Reaction of Alkylmercury Halides with Other α , β -Unsaturated **Compounds.** Properties of the other reductive alkylation products listed in Tables 2, 4 and 6 are given in the supplementary material.

(a) Chalcone. Sunlamp photolysis of chalcone with *t*-BuHgCl (4 equiv), KI (4 equiv), and K₂S₂O₈ (2 equiv) for 24 h produced 60% of **10**. The regiochemistry of the addition was proven by deuteration in Me₂SO/*t*-BuOK/D₂O to give a dideuterio derivative and by reduction with LAH to give the alcohol in which the benzylic proton at δ 2.84 was coupled to two diastereotopic methylene protons with J = 11.7 and 3.0 Hz.

4.4-Dimethyl-1,3-diphenyl-1-pentanone (10). The compound was a solid: mp 112–113 °C; ¹H NMR (CDCl₃) δ 7.87–7.84 (m, 2 H), 7.54–7.38 (m, 3 H), 7.26–7.12 (m, 5 H), 3.51 (dd, J = 16.5, 9.9 Hz, 1 H), 3.33 (dd, J = 16.5, 3.9 Hz, 1 H), 3.26 (dd, J = 9.9, 3.9 Hz, 1 H), 0.94 (s, 9 H); ¹³C NMR (CDCl₃) δ 199.4 (s), 142.3 (s), 137.3 (s), 132.7 (d), 129.3 (d), 128.4 (d), 127.8 (d), 127.5 (d), 126.0 (d), 51.0 (d), 39.7 (t), 33.8 (s), 28.0 (q); GC and HRMS m/z (%) calcd for C₁₉H₂₂O 266.16 71, found 266.1667 (0.2), 209 (100), 105 (80), 91 (24), 72 (29), 57 (8). The dideuterated compound had aliphatic ¹H NMR signals at δ 32.3 (1 H), and 0.94 (9 H) while in the ¹³C spectrum the peak at δ 39.7 was not detected. The dideuterated compound gave EIMS m/z (%) = 268 (M⁺, 1), 253 (0.8), 212 (44), 105 (100); CIMS (isobutane) = 269 (M + 1⁺, 100), 212 (15); CIMS (NH₃) = 305 (M + 35⁺, 5), 268 (M + 18⁺, 100), 269 (M + 1⁺, 10).

(b) Coumarin. Photolysis of coumarin with *t*-BuHgCl in the presence of DABCO gave 90% of the oxidative alkylation product,¹³ while reaction with *t*-BuHgCl/Et₃SiH formed mainly 3-*tert*-butyldihydrocoumarin.

3-(1,1-Dimethylethyl)coumarin. The compound had mp 82–83 °C; ¹H NMR (CDCl₃) δ 7.54 (s, 1 H), 7.50–7.35 (m, 2 H), 7.35–7.20 (m, 2 H), 1.40 (s, 9 H); GC and HMRS *m*/*z* (%) calcd for C₁₃H₁₄O₂ 202.0994, found 202.0991 (45), 187 (100), 160 (85), 144 (11), 133 (17), 115 (31); FTIR (CDCl₃) ν = 2964, 1722, 1705 cm⁻¹.

3-(**1,1-Dimethylethyl)dihydrocoumarin** (**12**). The compound had mp 45–46 °C; ¹H NMR (CDCl₃) δ 7.27–6.96 (m, 4 H), 3.065 (dd, J = 16.2, 6.6 Hz, 1 H), 2.95 (dd, J = 16.2, 9.6 Hz, 1 H), 2.50 (dd, J = 9.6, 6.6 Hz, 1 H), 1.08 (s, 9 H); GC and HRMS *m*/*z* (%) calcd for C₁₃H₁₆O₂ 204.1150, found 204.1149 (6), 189 (77), 168 (39), 148 (60), 133 (100), 120 (26), 119 (15), 107 (92), 91 (29), 83 (18), 77 (15), 57 (42).

4-(1,1-Dimethylethyl)dihydrocoumarin. The compound was a solid: mp 43-45 °C; ¹H NMR (CDCl₃) δ 7.31-7.04 (m, 4 H), 3.05 (d, J = 15.9 Hz, 1 H), 2.75 (d, J = 7.5 Hz, 1 H), 2.68 (dd, J = 15.9, 7.5 Hz, 1 H), 0.95 (s, 9 H); GC and HMRS *m/z* (%) calcd for C₁₃H₁₆O₂

204.1150, found 204.1151 (11), 148 (100), 91 (20), 57 (85); FTIR (CDCl₃) $\nu = 2966, 2901, 1765 \text{ cm}^{-1}$.

(c) **N-Methylmaleimide.** The reductive and oxidative mono-*tert*butylation products of N-methylmaleimide have been previously reported.^{7b}

trans-3,4-Bis(1,1-dimethylethyl)-1-methyl-2,5-pyrrolidinedione (*trans*-8). The compound was isolated as a solid, mp 128–131 °C. The structure was assigned on the basis of isomer stability: ¹H NMR (CDCl₃) δ 2.94 (s, 3 H), 2.37 (s, 2 H), 0.98 (s, 18 H); GC and HRMS m/z (%) calcd for C₁₃H₂₃NO₂ 225.1729, found 225.1730 (0.2), 210 (2), 169 (20), 113 (100), 57 (14); FTIR (CDCl₃) ν = 2963, 1692 cm⁻¹.

cis-3,4-Bis(1,1-dimethylethyl)-1-methyl-2,5-pyrrolidinedione (*cis*-8). The compound was a solid, mp 74–87 °C; ¹H NMR (CDCl₃) δ 2.93 (s, 3 H), 2.80 (s, 2 H), 1.20 (s, 18 H); GC and HRMS *m*/*z* (%) calcd for C₁₃H₂₃NO₂ 225.1729; calcd for C₁₃H₂₀NO₂ (M-Me) 210.1494, found 225.1721 (0.1), 210.1491 (1), 169 (18), 113 (100), 57 (25); CIMS (NH₃) 226 (M + 1⁺); FTIR (CDCl₃) ν = 2963, 1769, 1699 cm⁻¹.

(d) Benzylideneanilines. Dark reactions with t-BuHgI/KI were not observed while photolysis with 1 equiv each of t-BuHgI and KI produced $\sim 50\%$ of the reductive alkylation product in 12 h. Alkylation was not observed in the absence of KI. In the presence of 1 equiv of PTSA, t-BuHgI, and KI the reactions were much faster and produced the reductive alkylation products in $\sim 100\%$ yield. The reactions were complete in ~ 3 h with sunlamp photolysis and in ~ 24 h in the dark. Competition of (*E*)-PhCH=CHI with PhCH=NPh and with PhCH=NPh plus 6 equiv of PTSA with t-BuHgCl/KI indicated a relative reactivity of PhCH=CHI:PhCH=CHI:PhCH=NHPh⁺ of 0.8:1.0:4.0.

N-(2,2-Dimethyl-1-phenylpropyl)aniline. ¹H NMR (CDCl₃) δ 7.30–7.15 (m, 5 H), 7.01 (t, J = 7.8 Hz, 2 H), 6.57 (t, J = 7.2 Hz, 1 H), 6.48 (d, J = 7.8 Hz, 2 H), 4.25 (s, 1 H), 4.03 (2, 1 H), 1.00 (s, 9 H); GCMS and HRMS *m*/z (%) calcd for C₁₇H₂₁N 239.1674, found 239.1678 (4), 182 (100), 104 (10), 77 (19), 57 (1).

4-[2',2'-Dimethyl-1'-(phenylamino)propyl]benzonitrile. The compound had mp 159–160 °C; ¹H NMR (CDCl₃) δ 7.57 (d, J = 8.1 Hz, 2 H), 7.43 (d, J = 8.4 Hz, 2 H), 7.07–7.02 (m, 2 H), 6.62 (t, J = 7.2 Hz, 1 H), 6.43–6.40 (m, 2 H), 4.26 (br. d, J = 5.1 Hz, 1 H), 4.08 (d, J = 5.4 Hz, 1 H), 0.99 (s, 9 H); ¹³C NMR (CDCl₃) δ 147.2 (s), 146.9 (s), 131.6 (d), 129.14 (d), 129.10 (d), 118.9 (s), 117.5 (d), 113.1 (d), 110.73 (s), 67.07 (d), 34.93 (s); GC and HRMS *m*/*z* (%) calcd for C₁₈H₂₀N₂ 264.1632, found 246.1627 (5), 207 (100), 105 (5), 77 (10). Anal. Calcd: C, 81.78; H, 7.62; N, 10.60. Found: C, 82.12; H, 7.79; N, 10.40.

General Procedure for Competitive tert-Butylations, Table 7. Reaction of a pair of alkenes of known concentrations with t-BuHgX was stopped short of completion so that less than 50% of any alkene had been consumed. After workup the yields of the tert-butylation products were determined by ¹H NMR using toluene as an internal standard. The relative reactivities were calculated by the integrated expression for two competing first order reactions assuming that the final alkene concentration was equal to the initial concentration minus the alkylation product formed.

Acknowledgment. We are grateful for financial support provided by the National Science Foundation (CHE-9220639).

Supplementary Material Available: Preparation of substrates and physical properties of *tert*-butylation products of Tables 2, 4, and 6 (14 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS, and can be downloaded from the Internet; see any current masthead page for ordering information.

JA9433277